

Extraction of Lithium by-products from electrolyte salt

using acetic acid without emitting toxic gases

Ejae Ahn, Ahyeon Kim, Leesue Ham, Cheolsoo Jung,†
Department of Chemical Engineering, University of Seoul

Introduction

- Recycling process of the used-battery is mainly focused on obtaining valuable metals in cathode by using inorganic acid which is harmful to the environment.
- Research on used-electrolyte recycling is insufficient, also few research has been conducted on handling the harmful gas generated through the recycling.
- In our study, we retrieved Li, F from LiPF₆, HF to CH₃COOLi, NaF by using acetic acid which is environmental-friendly organic acid.
- Through this process, no harmful gas is emitted and most of Li can be collected.

Reflux condenser (2) (2) (2) (3) (4) (4) (5) (6) (7) (1) (1) (1) (2) (2) (3) (4) (4) (4) (CH₃COOH(I) (1) (1) (1) (2) (2) (3) (4) (4) (CH₃COOH(I) (B) (CH₃COOH(I) (CH

▶ Reaction Mechanism

- 1) $LiPF_6(aq.) + CH_3COOH(l) \rightarrow HF(g) + CH_3COOLi(aq.) + PF_5(g)$
- 2) $HF(g) + NaOH(aq.) \rightarrow NaF(s) + H_2O(l)$

 $CH_3COOH(l) + NaOH(aq.) \rightarrow CH_3COONa(aq.) + H_2O(l)$

 $PF_5(g) + 4H_2O(l) \rightarrow H_3PO_4(aq.) + 5HF(g)$

 $H_3PO_4(aq.) + 2NaOH(aq.) \rightarrow Na_2HPO_4(aq.) + 2H_2O(l)$

▶ Reaction Condition

Reaction time: 3 hour

Reaction temperature: 80 °C, 100 °C

Reaction molar ratio: $LiPF_6: CH_3COOH = 1:2, 1:4$

Results & Discussion > Flask (1)

Wavenumber (cm⁻¹)

FT-IR spectra of flask 1

Table.1 FT-IR data of flask 1

Table.1 FI-IN data of Hask 1				
Acetic acid (cm^{-1})	Experimental (cm ⁻¹)			
1759	1564			
1709	1460			

- Upon addition of Li salt, a new peak is expected to appear at lower wavenumbers because of the $C = 0 \cdots Li^+$ interaction.^[1]
- : $LiPF_6(aq.) + CH_3COOH(l)$ $\rightarrow HF(g) + CH_3COOLi(aq.) + PF_5(g)$
- Even if the reaction conditions change, the same substances can be seen from the experiments.

► TGA Analysis

Reference CH3COOLi

[Theory]

- 200~300 °C : 2CH₃COOLi · nH₂O (100%) \rightarrow 2CH₃COOLi (100 × $\frac{66}{66+18n}$ %) + 2nH₂O (100 × $\frac{18n}{66+18n}$ %)
- 300~500 °C: 2CH₃COOLi $\left(100 \times \frac{66}{66+18n}\%\right) \rightarrow \text{Li}_2\text{CO}_3 \left(100 \times \frac{66}{66+18n} \times \frac{74}{132}\%\right) + \text{C}_3\text{H}_6\text{O} \left(100 \times \frac{66}{66+18n} \times \frac{58}{132}\%\right)$

[80°C, LiPF₆: acetic acid = 1:4]

- $CH_3COOLi \cdot 1.14H_2O (90\%) \rightarrow CH_3COOLi (73\%) + 1.14H_2O (17\%)$
- 2CH₃COOLi (73%) \rightarrow Li₂CO₃ (49%) + C₃H₆O (24%)

[80°C, LiPF₆: acetic acid = 1:2]

- $CH_3COOLi \cdot 1.22H_2O (94\%) \rightarrow CH_3COOLi (75\%) + 0.92H_2O (19\%)$
- $2CH_3COOLi (75\%) \rightarrow Li_2CO_3 (40\%) + C_3H_6O (33\%)$
- => The number of H_2O attached to CH_3COOLi changed with the reaction ratio of $LiPF_6$ and CH_3COOH .
- Lithium acetate is very useful in DNA analysis and is used as a buffer for gel electrophoresis of DNA and RNA.
- Lithium carbonate is an important industrial material. Its main use is a precursor for compounds
 used in lithium-ion batteries. Cathode and electrolyte are made with lithium carbonate

Conclusions

- This study examined an environmental-friendly treatment method of lithium and harmful gas in electrolytes recycling process.
- Through this process, Li of $LiPF_6$ was obtained in the form of CH_3COOLi and F of HF was obtained in the form of NaF.
- Li₂CO₃ and Na₂O can be obtained by thermal processing of CH₃COOLi and CH₃COONa.

Flask (2)

► FT-IR Analysis

Table.2 FT-IR data of flask 2

	Prediction	Reference(cm ⁻¹)	Experimental(cm ⁻¹)	Verification	Note
	CH ₃ COONa	1561	1560	0	$C = O \cdots Na$
		1410	1406	Ο	interaction
	NaF	No strong peak	1	_	TGA analysis
	Na ₂ HPO ₄	856	924	X	
		942	1013	X	HPO_4^{2-} [3]
		1057	1045	X	

- NaF existence can't be checked by FT-IR -> Needs another method to verify its structure.
- Need a detailed plan for reaction condition of $LiPF_6$: $CH_3COOH = 1:1 -> Check PF_5$ behavior.

► TGA Analysis

[80°C, LiPF₆: acetic acid = 1:4]

- $2CH_3COONa (40\%) \rightarrow Na_2CO_3 (26\%) + (CH_3)_2CO (14\%)$
- Na_2CO_3 (26%) $\rightarrow Na_2O$ (15%) + CO_2 (11%)
- Approximately 20% of weight loss can't be defined.

[100°C, LiPF₆: acetic acid = 1:4]

- $CH_3COONa \cdot H_2O (56\%) \rightarrow CH_3COONa (48\%) + H_2O (8\%)$
- $2CH_3COONa (48\%) \rightarrow Na_2CO_3 (33\%) + (CH_3)_2CO (15\%)$
- Na_2CO_3 (33%) $\rightarrow Na_2O$ (20%) + CO_2 (13%)
- ∴ Approximately 40% NaF, theory ≈ experiment
- It is inevitable that PF_5 is formed through the reaction between $LiPF_6$ and CH_3COOH , but we couldn't find out the trace of PF_5 through FT-IR analysis.
- Utilization of by-products
 - Sodium fluoride for cavity prevention and toothpaste.
 - Sodium acetate for carbon source for culturing bacteria by ethanol precipitation.

References

[1] Kento KimuraJoh, MotomatsuYoichi, TominagaYoichi Tominaga. "Correlation Between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes", The Journal of Physical Chemistry C

- 120(23) [2] 호영소 비수 전해액 및 이를 포한하는 리튬 이차 전지 10-2014-0098925 2013/01/31
- [2] 홍연숙. 비수 전해액 및 이를 포함하는 리튬 이차 전지. 10-2014-0098925,2013/01/31 [3] Saba Daneshgar, Arianna Callegari(2018), "Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges", The journal of Resources.