A Study on Photocatalytic Synthesis and Optical Properties to Improve Hydrogen Production Capacity by Dual Z-scheme with Thermal Treatment

Han Soonyoung*, Oh Kiyoung*, Seo Dongjun*, Kong Minseok*, Junghyeun Kim**
*Department of Chemical Engineering, University of Seoul, Seoul, 02504, Korea

Introduction

- Photocatalyst
- Generally, a photocatalyst refers to a catalyst that accelerates chemical reaction using the energy from the light under irradiation of light. The majority of photocatalysts are based on semiconductor materials and they generate electron-hole pairs under irradiation which are utilized to accelerate reactions.

Recently, the synthesis of highly efficient photocatalyst has been under investigation as one of the environmentfriendly methods of producing hydrogen gas $\left(H_{2}\right)$.

Experimental

- Process

- Thermal Treatment

Results \& Discussion

The overall hydrogen production increased under thermal treatment compared to non-thermal treatment sample. The largest hydrogen production was shown under thermal treatment at $300^{\circ} \mathrm{C}$ for 30 minutes.
Under thermal treatment at $300^{\circ} \mathrm{C}$ for 30 minutes the hydrogen production rate is about $250 \mu \mathrm{~mol} / \mathrm{g} / \mathrm{h}$, producing the largest amount of hydrogen.

- FE-SEM

Under thermal treatment, the crystalline structure is rearranged into relatively large size than non-thermal treatment. So, we can see large nanorods under thermal treatment.
This change of crystalline structure was caused by particle aggregation and affected the performance of photocatalyst. All Under thermal treatment samples showed higher performance than without thermal treatment sample.

- Absorption spectra and Tauc plot

- Thermal treatment samples show improved absorption spectrum in visible light regions which means enhancement of absorbance
- Thermal treatment samples show larger bandgap than the non-thermal treatment sample.
- XRD pattern

- A faint peak $C d O$ peak was observed near 27° after thermal treatar
- This indicates that the thermal treatment led to the oxidation of $C d S$ to $C d O$.

\bullet XPS spectra

