A Study on Photocatalytic Synthesis and Optical Properties to Improve Hydrogen Production Capacity IVERSITY O by Dual Z-scheme with Thermal Treatment

Han Soonyoung*, Oh Kiyoung*, Seo Dongjun*, Kong Minseok*, Junghyeun Kim*,[†]

*Department of Chemical Engineering, University of Seoul, Seoul, 02504, Korea

Introduction

⁷ ⁸ ¹ ³ ³

Photocatalyst

Generally, a photocatalyst refers to a catalyst that accelerates chemical reaction using the energy from the light under irradiation of light. The majority of photocatalysts are based on semiconductor materials and they generate electron-hole pairs under irradiation which are utilized to accelerate reactions.

•

Recently, the synthesis of highly efficient photocatalyst has been under investigation as one of the environmentfriendly methods of producing hydrogen $gas(H_2)$.

• Hydrogen production rate

Experimental

♦ Thermal Treatment

Autoclave		En la
Solution		
	Heat	Product

Results & Discussion

- The overall hydrogen production increased under *thermal treatment* compared to non-thermal treatment sample.
- The largest hydrogen production was shown *under thermal treatment* at 300°C for 30 minutes.
- Under thermal treatment at 300°C for 30 minutes the hydrogen production rate is about 250 µmol/g/h, producing the largest amount of hydrogen.

Under thermal treatment

- Under thermal treatment, the crystalline structure is rearranged into relatively large size than non-thermal treatment. So, we can see large nanorods under thermal treatment.
- This change of crystalline structure was caused by particle aggregation and affected the performance of photocatalyst. All Under thermal treatment samples showed higher performance than without thermal treatment sample.

A XRD pattern

Absorption spectra and Tauc plot

• *Thermal treatment* samples show improved absorption spectrum in visible light regions which means enhancement of absorbance

• *Thermal treatment* samples show larger bandgap than the *non-thermal treatment* sample.

• A faint peak *CdO* peak was observed near 27° after *thermal treatment*.

• This indicates that the *thermal treatment* led to the oxidation of *CdS* to *CdO*.

A XPS spectra

Band Diagram

