

Hetero atom doped graphene : synthesis, characterizations

Yongseop Lee, Jaeryeong Lee, Dongju Han, Hyojeong Song, Yujin Lee

Department of Chemical Engineering, University of Seoul, Seoul, Korea

Introduction

- The redox flow battery (RFB) is emerging as a potential grid-scale electric energy storage system (ESS) to cope with the intermittent nature of solar and wind power.
- **vanadium redox flow battery (VRFB)**, which utilizes vanadium ion pairs for both the positive- and the negative-side redox reactions is currently one of the leading RFB systems, and in an early stage of commercial deployment.

Each carbon materials disperse in specific solution (rGO 0.04g + Ethanol 4 mL+ iso-propanol 1 mL)

- The purpose of this study is investigating and analyzing **kinetic effects of hetero atom doped grapehene** for vanadium redox kinetics by using electrochemical impedance spsectroscopy(EIS)
- Using dispersion solution, we put 6μl 2~3 times carbon materials on surface of glassy carbon(GC) electrode with micro pipette.
- 2) Electrocatalytic properties of carbon materials were characterized by EIS.

EIS results of each doped graphene •

• rGO open circuit model of carbon materials.

(5) XPS data

								, l					
Pristine		P doping		N doping		P, N doping			P doping		N doping		
Name	Atomic%	Name	Atomic %	Name	Atomic %	Name	Atomic %		60	—— P 900'C	60 <u></u>	N	1 900 'C
C1s	92.51	P2p	3.95	B1s	1.65	P2p	3.75		⁵⁰⁻ ⁻ ε ⁴⁰⁻		°E 40-		
N1s	0.28	B1s	14.31	C1s	89.29	B1s	13.43		10 40 40		5 6 6 6		
O1s	7.2	C1s	63.73	N1s	3.34	C1s	66.69		20- N		N 20		
_	-	N1s	3.00	O1s	5.72	N1s	5.03		10-		10-		
_	-	O1s	15.02	_	_	O1s	11.1		0	10 20 30 40 50 60 Z'/ohm cm ²	0 10	20 30 40 50 Z' / ohm cm²	}

900°C								
P doping	N doping	N/P doping						
60	60 -	40						

30

z, / ohm cm²⁰

0

10

20

Z' / ohm cm

60

30

Onclusions

- 1) Effects of Hetero atom doped graphene are analyzed by using XPS and various electrochemical analysis method, EIS.
- 2) Hetero atom doped graphene makes vanadium redox reaction rate high and charge transfer resistance low.
- 3) Each atomic doping has a different functionality and they must be used properly depending on the situation.