The synthesize of MeAl – LDH (Me = Co, Ni, Cu) with core-shell structure


Sungrak Son, Jaehoon Jung, Yeji Jeon, Hwajung Jo, Doohwan Lee*

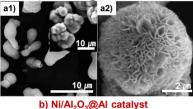
Department of Chemical Engineering, University of Seoul, Seoul, Korea

Introduction

- Catalysts with metal core expected to show superior performance in highly exothermic/endothermic reaction such as CO2 methanation
- It is first synthesized catalyst and can be used in Supercapacitor, catalyst and others.
- ♦ NiAl-LDH@Al catalysts perform better than conventional Ni/Al2O3 catalysts at the CO2 methanation reaction

Experimental

Results & Discussion

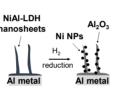

h1)

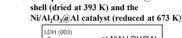
a1

b1)

♦ (a) NiAl-LDH@AL core-shell and (b)Ni/Al₂O₃@Al catayst

a) NiAl-LDH@Al core-shell

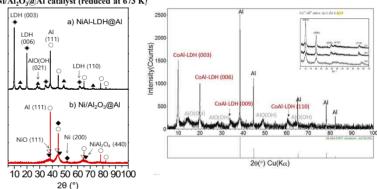

b2)


♦ (a) CoAl-LDH@Al core-shell (120°C) and (b) CoAl-LDH@Al core-shell (150 °C)
a) CoAl-LDH@Al core-shell (120°C, Co:Al=1:2 molar ratio)

a2)

b) CoAl-LDH@Al core-shell (150°C, Co:Al=1:2 molar ratio)

b2)

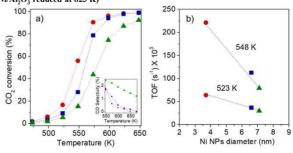


◆ XRD pattern of the NiAl-LDH@Al core-

XRD pattern of the CoAl-LDH@Al core-shell (150°C, Co:Al =1:2 molar ratio)

Catalysis & Nanomaterials

LAB


♦ Properties of the Ni/Al₂O₃@Al and the Ni/Al₂O₃ catalysts

Reduction temp. (K)	Ni content ^[a] (%)	Relative Ni reduction ^[b] (%)	H2 chemisorption (µmol/g)	Ni dispersion ^[c] (%)	Average Ni particle size (nm)		
					H2 chemisorption	XRD	TEM
673	17.6	27	127	31.4	2.0	3.7	3.9
823	17.6	85	108	8.7	7.2	6.6	6.2
823	17.9	73	78	7.0	8.9	7.1	7.4
	temp. (K) 673 823	temp. (K) (%) 673 17.6 823 17.6	Reduction temp. (K)Ni content $^{(5)}$ (%)reduction $^{(5)}$ (%)67317.62782317.685	Reduction temp. (K) N1 content (*) reduction(*) chemisorption (µmol/g) 673 17.6 27 127 823 17.6 85 108	Reduction Ni content ⁽⁵⁾ reduction ^[5] chemisorption (\u00fcm) Ni dispersion ⁽⁵⁾ 673 17.6 27 127 31.4 823 17.6 85 108 8.7	Reduction temp. (K) Ni content ¹⁶¹ (%) reduction ^[6] (%) chemisorption (µmol/g) Ni dispersion ^[6] 673 17.6 27 127 31.4 2.0 823 17.6 85 108 8.7 7.2	Reduction Ni content ^(a) reduction ^[b] chemisorption ($\%$) Ni dispersion ^[c] Hi ($\%$) XRD 673 17.6 27 127 31.4 2.0 3.7 823 17.6 85 108 8.7 7.2 6.6

[a] ICP-AES characterization [b] H₂-TPR analysis

[c] calculated from H₂-TPR and chemisorption analysis with the reduced Ni net-amount by the reduction treatment

(a) CO₂ conversion and CO selectivity by the CO₂ methanation reaction (space velocity = 78,600 ml h⁻¹ g_{cat}⁻¹. (b) turnover frequency (TOF) on the Ni/Al₂O₃@Al core-shell and the conventional Ni/Al₂O₃ catalysts (● : Ni/Al₂O₃@Al reduced at 673 K, ■ : Ni/Al₂O₃@Al reduced at 823 K,
▲: Ni/Al₂O₃ reduced at 823 K)

Conclusions

- · A variety of catalysts with aluminum core derived from LDH structure can be prepared by hydrothermal reactions
- Ni catalysts with aluminum core showed good activity, selectivity in CO2 methanation due to high dispersity of nickel and good interaction with the support