Enhanced thermoelectric performance by Cu addition in p-type Bi-Te alloys

Jiwoo An and Jihoon Jeon 서울시립대학교

Advanced Energy Material Laboratory, Department of Chemical Engineering, University of Seoul, Seoul 02504, South Korea UNIVERSITY OF SEOUL

Introduction	Experimental method
There are studies showing thermoelectric properties increase by cation addition on p-type Bi-Te alloy. Especially, Bi _{0.5} Sb _{1.5} Te ₃ alloys	 We synthesized a series of Cu doped bismuth antimony telluride (Cu_xBi_{0.5}Sb_{1.5}Te₃, x = = 0, 0.0025, 0.005, 0.0075, 0.01)
are most widely used thermoelectric p-type materials for room-temperature applications. However, the analysis of Cu addition on p-	polycrystalline samples by solid-state reaction in a vacuum-sealed quartz tube with stoichiometric compositions.
type Bi-Te alloy(Bi _{0.5} Sb _{1.5} Te ₃) has not been verified yet. In this study, we investigated the influence of Cu addition in <i>p</i> -type	• Stoichiometric amounts of Cu, Bi, Sb, Te shots (Copper : 99.99% Bismuth : 99.999%, Antimony: 99.999%, Tellurium :
Cu _x Bi _{0.5} Sb _{1.5} Te ₃ (x = 0, 0.0025, 0.005, 0.0075, 0.01) polycrystalline alloys on the electronic and thermal transport properties based on	99.999%,) were mixed and reacted in a vacuum-sealed quartz tube at 1050°C for 18h.
parabolic band modeling and Debye-Callaway model. It was found that the Cu addition increases the hole concentrations without	 The polycrystalline samples were compacted using spark plasma sintering (SPS) at 400 °C for 5min under 60MPa.
modifying the band structure much and reduces the lattice and bipolar thermal conductivity quite effectively.	• The S and σ were measured in the perpendicular direction to the SPS pressing direction using ZEM-3 from 300K to 520K.
Dimensionless figure of merit(zT) in Thermoelectrics	Cu addition in Bi _{0.5} Sb _{1.5} Te ₃
 Atom Electron (a) (b) Active Cooling (c) Heat Source 	 Electrical properties

- Through the correlation between density of effective mass and band structure, the change in band structure was observed and a schematic diagram was drawn.
- The Cu atoms are inserted between the layers of the Bi-Te material to make a larger difference in mass and lattice constant compared to other substitutional doping.
- As Cu addition increased, Carrier concentration increases and Mobility decreases.
- Through the addition of Cu, zT increased in the whole temperature range by high power factor value and thermal conductivity reduction effect at high temperature.
- $Cu_{0.0075}Bi_{0.5}Sb_{1.5}Te_3$ exhibited the highest zT value of 1.15 at 400 K.