"Batman"의 두 판 사이의 차이

2019 CE
이동: 둘러보기, 검색
(개발 과제의 배경)
(개발 과제의 배경)
39번째 줄: 39번째 줄:
  
 
====개발 과제의 배경====
 
====개발 과제의 배경====
 +
 +
[[파일:흑연.png|200픽셀|왼쪽|설명==]]
  
 
현재 리튬이온배터리는 휴대전화나 노트북과 같은 모바일 IT 기기에 사용되는 소형 배터리와 전기자동차 및 ESS(Energy storage system)에 사용되는 중대형 배터리로 구분되며, 최근에는 전기자동차용 배터리를 중심으로 가파른 시장 성장세를 보인다.
 
현재 리튬이온배터리는 휴대전화나 노트북과 같은 모바일 IT 기기에 사용되는 소형 배터리와 전기자동차 및 ESS(Energy storage system)에 사용되는 중대형 배터리로 구분되며, 최근에는 전기자동차용 배터리를 중심으로 가파른 시장 성장세를 보인다.

2021년 12월 7일 (화) 23:44 판

프로젝트 개요

기술개발 과제

국문 : Electropolymerization에 의한 SEI 형성 메커니즘 분석

영문 : SEI formation mechanism by electropolymerization

과제 팀명

Batman

지도교수

정철수 교수님

개발기간

2021년 9월 ~ 2021년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 2016890014 김용은(팀장)

서울시립대학교 화학공학과 2016340020 심준섭

서울시립대학교 화학공학과 2018340029 윤예은

서울시립대학교 화학공학과 2018890005 구홍지

서울시립대학교 화학공학과 2018890077 조하진

서론

개발 과제의 개요

개발 과제 요약

- 리튬이온배터리의 PC/DEC 전해액에 ICEMA를 첨가하여 SEI 층 형성을 유도한다.

- ICEMA 첨가제와 PC/DEC 전해액을 사용한 리튬이온배터리의 성능을 분석한다.

- ICEMA 첨가 농도를 최적화한다.

- ICEMA에 의한 SEI 층 형성 메커니즘을 연구한다.

개발 과제의 배경

섬네일을 만드는 중 오류 발생: convert: Image width exceeds user limit in IHDR `/var/www/capstone/ce/images/8/8b/흑연.png' @ warning/png.c/MagickPNGWarningHandler/1672.
convert: Image height exceeds user limit in IHDR `/var/www/capstone/ce/images/8/8b/흑연.png' @ warning/png.c/MagickPNGWarningHandler/1672.
convert: Invalid IHDR data `/var/www/capstone/ce/images/8/8b/흑연.png' @ error/png.c/MagickPNGErrorHandler/1646.
convert: corrupt image `/var/www/capstone/ce/images/8/8b/흑연.png' @ error/png.c/ReadPNGImage/4095.
convert: no images defined `/tmp/transform_ceebf69e771c.png' @ error/convert.c/ConvertImageCommand/3210.

Error code: 1

현재 리튬이온배터리는 휴대전화나 노트북과 같은 모바일 IT 기기에 사용되는 소형 배터리와 전기자동차 및 ESS(Energy storage system)에 사용되는 중대형 배터리로 구분되며, 최근에는 전기자동차용 배터리를 중심으로 가파른 시장 성장세를 보인다.

리튬이온배터리는 양극재, 음극재, 분리막 및 전해질로 구성되며, 이들을 4대 소재라고 부른다. 배터리의 안전성 및 성능을 향상하기 위해 4대 소재별로 다양한 연구가 이루어지고 있고, 해당 연구는 전해질을 중심으로 진행하였다.

전해질은 리튬이온을 전달하는 매개체며, 액체 전해질은 대표적인 전해질로 ‘전해액’으로 불린다. 전해액은 전해질 염, 유기용매, 첨가제로 구성된다. 전해질 염은 리튬이온이 통과할 수 있는 이동통로로, 높은 이온전도도와 화학적 안전성을 가진 LiPF6를 주로 사용한다.

유기용매는 염을 용해하기 위해 사용되며 높은 유전율과 낮은 점도를 가진, 이온전도도가 높은 유기액체여야 한다. 하지만 유전율이 높으면 극성이 높아져 점도가 증가하는 문제가 있어, 고유전 특성의 cyclic carbonate(EC: ethylene carbonate, PC: propylene carbonate)와 점도가 낮은 linear carbonate(DEC: diethyl carbonate, EMC: , DMC)를 혼합하여 사용한다. 이외에도 유기용매는 화학 반응성 및 온도에 따른 특성 변화, 융점 및 발화점 등 안전성에 중요한 특성을 가진다.

첨가제는 특정 목적을 위해 소량으로 첨가되는 물질이다. 양극용 첨가제는 표면을 보호하여 열화 및 발열을 억제하고 과충전을 방지하는 효과가 있고, 음극용 첨가제는 주로 SEI(Solid Electrolyte Interface)를 형성하여 전지의 수명과 성능을 향상한다.

현재 상용화된 리튬이온배터리의 전해액 구성은 LiPF6 염과 EC/DEC 용매이다. EC는 고유전율(350K에서 k=89.78)을 가졌지만, 융점이 36.4℃로 높다는 단점이 있다. 따라서 저온에서 점도의 증가로 이온전도도가 크게 떨어지고, 배터리 성능은 저하된다.

이에 반해 PC는 융점이 –48.8℃로 매우 높고, EC와 비슷한 수준의 높은 유전율(300K에서 k=64.92)을 갖고 있다. 하지만 흑연계 음극재를 사용하는 리튬이온배터리에서 PC 활용은 어렵다. 흑연 층간에서 PC와 solvation 된 리튬이온의 비가역적인 삽입 반응(intercalation)으로 흑연의 exfoliation을 유발하기 때문이다.

PC에 의한 흑연의 exfoliation을 방지하기 위한 다양한 연구가 진행 중이며, 그중 한 가지는 첨가제에 의한 SEI의 형성이다. 선행 연구에 따르면 capacitor에서 ICEMA(2-Isocyanatoethyl methacrylate) monomer가 graphite 전극에서 polymerization 되며 graphite 표면을 보호하는 효과를 보이는 것으로 나타났다. 리튬이온배터리에서도 ICEMA 첨가제를 이용하여 이와 유사한 효과를 나타내는지 확인하고, 이를 이용해 흑연 음극재에서 PC 유기 용매의 상용화를 기대하고자 한다.

개발 과제의 목표 및 내용

내용

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황

내용

  • 특허조사 및 특허 전략 분석

내용

  • 기술 로드맵

내용

시장상황에 대한 분석

  • 경쟁제품 조사 비교

내용

  • 마케팅 전략 제시

내용

개발과제의 기대효과

기술적 기대효과

내용

경제적, 사회적 기대 및 파급효과

내용

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

내용

설계

설계사양

제품의 요구사항

내용

설계 사양

내용

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용