"유준재교수님2팀"의 두 판 사이의 차이
(→관련 기술의 현황) |
(→기술적 기대효과) |
||
79번째 줄: | 79번째 줄: | ||
===개발과제의 기대효과=== | ===개발과제의 기대효과=== | ||
====기술적 기대효과==== | ====기술적 기대효과==== | ||
− | + | ◇ 본 연구에서 수행한 feed 조건 다양화와 재활용률 조정을 통한 최적화 모델 개발은 기존 플라스틱 선별 및 재활용 기술의 한계를 극복하며, 재활용 공정의 효율성과 실현 가능성을 높이는 데 기여한다. 다양한 feed 조건(플라스틱 성분, 혼합 비율 등)과 재활용률 제한에 따른 최적화를 통해 공정 민감도를 분석하며, 실제 산업 현장에서 발생하는 문제를 해결할 기술적 근거를 제시한다. 예를 들어, 낮은 재활용률이 요구되는 상황과 높은 재활용률을 목표로 하는 상황에서 각각의 최적 공정을 비교 분석해 범용적인 최적화 모델을 설계할 수 있다. | |
− | + | ◇ 재활용률 제한을 도입하여 기존 모델이 이론적 최적화에 치우친 한계를 보완하였다. 재활용률이 제한된 상황에서도 효율적인 공정을 구현할 수 있도록 Pyomo 시뮬레이터를 활용해 공정을 세밀히 분석하고 개선 방안을 도출하였다. 이러한 연구는 재활용률 제한과 feed 조건 변화가 공정 효율성, 경제성, 환경적 지속 가능성에 미치는 영향을 종합적으로 파악할 수 있는 자료를 제공하며, 재활용 기술 전반의 발전을 지원한다. | |
+ | |||
+ | ◇ 본 연구의 결과물은 플라스틱 선별 및 재활용 공정의 데이터 기반 설계와 공정 관리 시스템 개선에 중요한 기술적 기준으로 활용될 수 있다. 특히, feed 조건과 재활용률 변화에 따른 공정 효율성 데이터를 축적함으로써 AI 기반 공정 자동화와 같은 기술적 혁신에도 기여할 것이다. 기존의 단순 선별 기술에서 벗어나 지능형 시스템으로의 전환을 가속화할 수 있다. | ||
====경제적, 사회적 기대 및 파급효과==== | ====경제적, 사회적 기대 및 파급효과==== |
2024년 12월 5일 (목) 07:54 판
프로젝트 개요
기술개발 과제
국문 : 폐플라스틱 공급망 최적화 : 경제성과 효율성 중심의 선별·재활용 공정 개선
영문 : Optimization of Plastic Waste Supply Chain: Improving Sorting and Recycling Processes with a Focus on Economic Efficiency and Effectiveness
과제 팀명
유준재 교수님 2팀
지도교수
유준재 교수님
개발기간
2024년 9월 ~ 2024년 12월 (총 4개월)
구성원 소개
서울시립대학교 화학공학과 20213400** 김** (팀장)
서울시립대학교 화학공학과 20213400** 정**
서론
개발 과제의 개요
개발 과제 요약
◇ 폐플라스틱 공급망의 최적화 (선별 및 재활용 공정 중심) 본 연구는 폐플라스틱의 선별 및 재활용 공정을 통합하여 공급망을 최적화하고, 공정의 효율성을 개선하며 재활용률을 높이는 방안을 제시하는 것을 목표로 한다. 이를 위해 수학적 모델링과 시뮬레이션 기법을 활용하여 기존 연구의 한계를 보완하고, 실제 데이터 기반의 현실적인 솔루션을 도출한다.
◇ Pyomo 패키지를 활용한 시뮬레이션 모델 개발 Pyomo 시뮬레이터를 사용하여 선별 및 재활용 공정의 변수를 체계적으로 분석하고, 다양한 feed 조건에 따라 효율성을 비교한다. 이를 통해 각 공정에서 최적의 재활용 방법과 비용 절감 방안을 제시하는 모델을 개발한다.
◇ 현실적 재활용 데이터 기반의 공정 평가 기존 연구에서 간과된 재활용률의 현실적인 한계를 분석하여 feed 조건과 공정 조합에 따른 재활용 성과를 평가한다. 이를 통해 실제 적용 가능한 데이터 기반의 재활용 공정 최적화를 구현하며, 이를 바탕으로 경제성과 환경적 지속 가능성을 균형 있게 고려한 전략적 해법을 제시한다.
◇ 비효율성 개선을 통한 최적화 전략 도출 재활용 공정에서 발생할 수 있는 비효율성을 발견하고, 이를 개선하기 위한 데이터 기반 분석 및 최적화 방안을 도출한다. 이 과정에서 feed 조건 변화와 처리 방식의 상호작용을 중점적으로 평가하며, 공정의 투명성과 신뢰도를 제고한다.
개발 과제의 배경
◇ 플라스틱 재활용 현황
1. 국내 플라스틱 소비 및 폐기물 현황
한국은 플라스틱 소비가 급증하고 있는 국가 중 하나로, 연간 약 700만 톤의 플라스틱을 소비하고 있다. 그중 약 85%가 소각 또는 매립 방식으로 처리되고 있으며, 이는 자원의 낭비와 함께 심각한 환경 오염을 초래하는 문제로 지적되고 있다. 플라스틱은 고분자 물질로 자연적으로 분해되지 않기 때문에 소각하거나 매립하는 방식은 장기적으로 해양, 토양 오염의 주범이 되고 있다. 특히 소각 과정에서 발생하는 다이옥신과 같은 유해물질은 인체에 악영향을 미치며, 매립된 플라스틱은 토양 오염 및 미세 플라스틱 문제로 이어진다.
또한, 플라스틱 생산과 소비량은 지속적으로 증가하고 있다. 전 세계적으로 1950년에는 연간 150만 톤의 플라스틱이 생산되었으나, 2019년에는 4억 6000만 톤으로 70년 동안 약 306배 증가하였다. 플라스틱은 특히 포장재, 일회용품 등에서 많이 사용되며, 한국에서도 하루 평균 약 1292.2톤의 폐합성수지류가 배출되고 있다. 더불어, 한국에서 배출되는 일회용 플라스틱 배달용기는 2019년보다 80.6% 급증한 수치를 보인다.
플라스틱의 과도한 소비는 전 세계적인 환경 문제를 일으키고 있다. 2019년 기준 전 세계 플라스틱 재활용률은 약 9%에 불과하며, 19%는 소각되고 50%는 매립되며 나머지 22%는 통제되지 않는 쓰레기장이나 노천에서 소각되거나 해양으로 유출되고 있다. 이러한 문제는 특히 한국에서 더욱 두드러지는데, 실질적으로 재활용되는 플라스틱의 비율은 약 23%에 그친다. 이는 재활용 효율이 낮고, 처리 공정의 한계로 인해 복잡한 폐기물 수거 체계에 의존하고 있는 것이 주요 원인이다. 수작업에 많이 의존하는 현재의 시스템은 혼합된 플라스틱을 분리하는 데 많은 비용과 시간이 소요된다. 일부 플라스틱은 재질이 혼합되어 있거나 이물질이 묻어있는 등 재활용이 어려운 형태로 존재해 재활용률을 더욱 낮추는 요인으로 작용한다.
이에 따라 한국은 자원순환 사회로의 전환을 목표로 하고 있으며, 플라스틱의 사용을 줄이고 재활용을 확대하기 위한 정책적 접근과 기술적 혁신을 모색하고 있다. 그러나 여전히 국내 재활용 인프라는 부족하며, 향후 더 많은 연구와 투자가 필요한 상황이다. 플라스틱 소비가 지속적으로 증가하는 만큼, 이를 처리할 수 있는 효율적인 시스템을 구축하는 것이 시급하다.
그림 1. 국내 플라스틱 연간 소비량 (플라스틱 대한민국 2.0 보고서, 그린피스)
그림 2. 주요 국제 협약에서의 플라스틱 논의 (대외경제정책연구원(KIEP) 세계 경제 포커스(2022.5.9.))
2. 환경 이슈 및 관련 정책
플라스틱 폐기물은 그 자체로 자연 분해가 거의 불가능한 물질로, 환경에 장기적인 영향을 미치는 주요 오염원 중 하나이다. 플라스틱이 해양으로 유입될 경우 해양 생태계에 심각한 피해를 줄 수 있으며, 특히 미세 플라스틱 문제는 전 세계적으로 큰 우려를 낳고 있다. 한국의 경우, 해양에 유입되는 플라스틱 폐기물 양이 증가하면서 연안 지역과 해양 생물에 미치는 악영향이 더욱 두드러지고 있다. 토양으로 유입된 플라스틱은 분해되지 않고 남아 토양의 생산성을 저하시킬 뿐만 아니라, 물과 함께 자연 생태계로 확산되어 장기적으로 생물 다양성을 감소시키는 결과를 초래한다.
전 세계적으로 플라스틱 폐기물 문제를 해결하기 위해 각국은 다양한 플라스틱 저감 정책을 도입하고 있다. 유럽연합(EU)은 2030년까지 모든 플라스틱 포장재를 재사용 가능하도록 만들겠다는 계획을 발표했으며, 이를 통해 일회용 플라스틱 사용을 획기적으로 줄이고 있다. 또한, 일회용 플라스틱에 대한 세금 부과와 재활용 의무화를 통해 플라스틱 소비 감소와 재활용 증대를 추진하고 있다. 이러한 정책은 플라스틱 폐기물로 인한 환경 피해를 줄이는 데 중요한 역할을 하고 있으며, 재활용 산업을 촉진하는 데 기여하고 있다.
한국 또한 플라스틱 폐기물 문제를 해결하기 위한 다각적인 정책을 시행하고 있다. 2021년, 한국의 플라스틱 재활용률은 약 73%에 달하지만, 이는 소각을 포함한 에너지 회수를 재활용 범주에 포함한 결과로, 실제 재활용률은 27%에 불과하다. 한국은 ‘자원순환사회 전환 촉진법’을 통해 2025년까지 폐플라스틱 열분해 처리 비율을 3.6%까지 확대하고, 화학적 재활용 기술을 통해 플라스틱 폐기물을 에너지 자원으로 전환하려는 노력을 기울이고 있다. 또한, 플라스틱 사용량을 줄이기 위해 다양한 일회용품 규제 정책도 추진 중이다. 플라스틱 빨대, 일회용 컵, 비닐봉투 사용을 규제하고 다회용기 사용을 촉진하는 제도를 마련했다.
플라스틱 폐기물 문제는 기후 위기와도 밀접하게 연결된다. 플라스틱 생산부터 폐기까지의 전 과정에서 온실가스가 배출되며, 2019년 기준 전 세계 온실가스 배출량의 약 3.4%를 차지하고 있다. 또한, 플라스틱 생산량이 증가하면서 2060년에는 플라스틱 관련 온실가스 배출량이 43억 톤에 달할 것으로 예상된다. 이러한 문제를 해결하기 위해서는 플라스틱 생산량을 줄이고, 보다 효과적인 재활용 시스템을 구축하는 것이 중요하다.
그림 3. 플라스틱 자원순환 추진 과제 (폐플라스틱 재활용산업 현황과 시사점, 플라스틱 코리아)
개발 과제의 목표 및 내용
내용
관련 기술의 현황
관련 기술의 현황 및 분석(State of art)
- 전 세계적인 기술현황
내용
- 특허조사 및 특허 전략 분석
내용
개발과제의 기대효과
기술적 기대효과
◇ 본 연구에서 수행한 feed 조건 다양화와 재활용률 조정을 통한 최적화 모델 개발은 기존 플라스틱 선별 및 재활용 기술의 한계를 극복하며, 재활용 공정의 효율성과 실현 가능성을 높이는 데 기여한다. 다양한 feed 조건(플라스틱 성분, 혼합 비율 등)과 재활용률 제한에 따른 최적화를 통해 공정 민감도를 분석하며, 실제 산업 현장에서 발생하는 문제를 해결할 기술적 근거를 제시한다. 예를 들어, 낮은 재활용률이 요구되는 상황과 높은 재활용률을 목표로 하는 상황에서 각각의 최적 공정을 비교 분석해 범용적인 최적화 모델을 설계할 수 있다.
◇ 재활용률 제한을 도입하여 기존 모델이 이론적 최적화에 치우친 한계를 보완하였다. 재활용률이 제한된 상황에서도 효율적인 공정을 구현할 수 있도록 Pyomo 시뮬레이터를 활용해 공정을 세밀히 분석하고 개선 방안을 도출하였다. 이러한 연구는 재활용률 제한과 feed 조건 변화가 공정 효율성, 경제성, 환경적 지속 가능성에 미치는 영향을 종합적으로 파악할 수 있는 자료를 제공하며, 재활용 기술 전반의 발전을 지원한다.
◇ 본 연구의 결과물은 플라스틱 선별 및 재활용 공정의 데이터 기반 설계와 공정 관리 시스템 개선에 중요한 기술적 기준으로 활용될 수 있다. 특히, feed 조건과 재활용률 변화에 따른 공정 효율성 데이터를 축적함으로써 AI 기반 공정 자동화와 같은 기술적 혁신에도 기여할 것이다. 기존의 단순 선별 기술에서 벗어나 지능형 시스템으로의 전환을 가속화할 수 있다.
경제적, 사회적 기대 및 파급효과
◇ 폐플라스틱 공급망의 최적화와 재활용 공정 개선은 국내외 경제에 영향을 미칠 수 있다. 최적화된 재활용 공정은 기업들이 재활용 효율성을 극대화하면서도 비용을 절감할 수 있는 기회를 제공한다. 특히, 선별 기술과 재활용 공정에서의 최적화를 통해 처리 비용이 절감되면 플라스틱 재활용 제품의 가격 경쟁력을 높일 수 있다. 이뿐만 아니라, 최적화된 공급망을 활용할 경우 보다 효율적으로 폐플라스틱을 수거하고 처리할 수 있으며 이를 통해 재활용 원료를 안정적으로 공급받아 원가를 절감할 수 있다. 한국 내 주요 석유화학 기업이나 재활용 산업 관련 기업들이 폐플라스틱을 저렴하고 효율적으로 공급받는다면 이를 원료로 사용하여 부가가치가 높은 제품을 생산할 수 있게 된다. 이러한 경제적 이점은 기업의 경쟁력을 강화시키고, 장기적으로 산업 전반에 걸친 재활용 시장의 성장을 촉진할 수 있다.
◇ 재활용 공정의 최적화는 일자리 창출에도 기여할 것으로 기대된다. 재활용 산업이 활성화됨에 따라 관련 기술을 개발하고 유지·보수하는 기술자나, 공정을 운영하고 개선하는 엔지니어들이 필요하게 될 것이다. 이로 인해 재활용 관련 분야에서 고용이 늘어나며, 고부가가치 기술 산업으로의 전환이 촉진될 수 있다. 특히, 자동화된 선별 시스템이나 AI 기반의 재활용 기술이 도입됨에 따라 고도의 기술력을 요구하는 일자리가 새롭게 창출될 것이다. 이는 기존의 단순 노동 중심의 재활용 산업에서 벗어나 기술 중심의 고부가가치 산업으로의 전환을 가속화하는 역할을 할 것이다.
◇ 환경적 지속 가능성을 추구하는 현대 사회에서 폐플라스틱 재활용은 사회적으로도 큰 의미를 가진다. 플라스틱 폐기물은 그 자체로 심각한 환경 문제를 초래하고 있으며, 재활용을 통해 이를 해결하려는 노력이 절실하다. 이 연구에서 제시된 폐플라스틱 공급망 최적화 모델은 환경적으로도 큰 기여를 할 수 있다. 우선, 최적화된 재활용 공정을 통해 플라스틱 폐기물의 매립량을 감소시키고, 소각으로 인한 유해물질 배출을 줄일 수 있다. 이는 환경 오염을 줄이고, 특히 대기 중의 다이옥신이나 미세 플라스틱 문제를 완화하는 데 기여할 수 있다. 또한, 플라스틱 소각 과정에서 발생하는 온실가스 배출을 줄임으로써 기후 변화 문제에 대한 대응 방안을 제공할 수 있다.
◇ 지역사회와의 연계를 통해 플라스틱 폐기물 문제를 해결하는 데 도움을 줄 수 있다. 지역별로 수거 및 처리 공정을 최적화함으로써 지역 내에서 발생하는 폐기물을 보다 효율적으로 관리할 수 있으며, 이를 통해 각 지역의 자원 순환성을 높일 수 있다. 예를 들어, 플라스틱 폐기물 처리 공정을 지역 내에서 자립적으로 운영함으로써 물류 비용을 줄이고, 지역 경제 활성화에도 기여할 수 있다. 이는 단순히 플라스틱 재활용을 통해 얻는 경제적 이익을 넘어서, 지역 주민들에게 친환경적인 이미지를 심어주고, 재활용에 대한 사회적 인식을 높이는 데도 도움을 줄 것이다.
◇ 폐플라스틱 재활용 공정 개선은 궁극적으로 사회 전반에 걸친 인식 변화를 유도할 수 있다. 일회용 플라스틱 사용이 환경에 미치는 영향에 대한 인식을 높이고, 재활용의 중요성을 사회적으로 확산시키는 계기가 될 수 있다. 또한, 이 연구는 정책 결정자들에게도 중요한 시사점을 제공할 수 있다. 정책 입안자들은 연구 결과를 바탕으로 효과적인 자원순환 정책을 마련할 수 있으며, 플라스틱 사용량 규제나 재활용 의무화와 같은 강력한 정책을 도입할 수 있는 근거로 활용될 수 있다. 이러한 정책은 궁극적으로 사회 전반의 지속 가능한 발전을 이끄는 중요한 역할을 할 것이다.
◇ 끝으로, 폐플라스틱 재활용 기술의 발전은 글로벌 시장에서도 큰 파급효과를 낼 수 있다. 한국의 재활용 기술이 전 세계적으로 적용된다면 한국의 기술력을 국제 사회에서 인정받게 하는 계기가 될 수 있으며, 재활용 산업 분야에서의 글로벌 리더로 자리매김하는 데 기여할 수 있다. 또한, 최적화된 공급망 모델을 통해 한국 내 폐기물 문제 해결뿐만 아니라, 다른 국가에서도 재활용 공정 개선에 대한 참고자료로 사용될 수 있을 것이다. 이는 한국이 플라스틱 재활용 분야에서 선도적인 역할을 하며, 글로벌 환경 문제 해결에 기여할 수 있는 중요한 기회로 작용할 것이다.
기술개발 일정 및 추진체계
개발 일정
내용
구성원 및 추진체계
내용
설계
설계사양
제품의 요구사항
내용
설계 사양
내용
개념설계안
내용
이론적 계산 및 시뮬레이션
내용
상세설계 내용
내용
결과 및 평가
완료 작품의 소개
프로토타입 사진 혹은 작동 장면
내용
포스터
내용
관련사업비 내역서
내용
완료작품의 평가
내용
향후계획
내용
특허 출원 내용
내용