"B4"의 두 판 사이의 차이

2019 CE
이동: 둘러보기, 검색
(기술적 기대효과)
(경제적, 사회적 기대 및 파급효과)
100번째 줄: 100번째 줄:
  
 
====경제적, 사회적 기대 및 파급효과====
 
====경제적, 사회적 기대 및 파급효과====
내용
+
 
 +
(1) 동물실험의 간소화 및 실험동물에 관한 윤리
 +
  의약기술이 발달하면서 인간의 수명은 과거 대비 크게 늘어났지만, 그 이면에는 수많은 실험동물의 희생이 있었다. 동물을 이용한 실험은 제약, 생명 과학, 해부학과 같은 순수 과학에서부터 응용과학의 분야까지 다양하게 활용되고 있다.
 +
  다양한 동물 실험 중 이들을 대상으로 하는 약물 투여 실험의 경우 가장 많이 행해지는 방법은 약물을 용매에 녹여 피하주사기를 통해 주입하는 주사(injection)이다. 이는 가장 빠르게 효과를 볼 수 있으며 사람이 실행하기 쉬워 많이 이용된다.[27] 하지만 이쯤에서 우리는 실험동물에 관한 윤리도 생각해보아야 한다. 동물들은 우리에게 표현을 하지 못할 뿐, 사람과 똑같이 아파한다.
 +
  실험동물로 가장 많이 쓰이는 것은 쥐를 비롯한 설치류이며 국내 동물실험의 90% 이상을 차지할 정도로 압도적이다. 약물을 입자화하여 압축시키고 마이크로-디스크 구조로 제작한다면 그 크기는 쥐의 경구투여에 알맞은 크기가 될 것이다. 이 방법을 이용한다면 쥐가 고통을 느낄 일도 줄어들고 주사하기 위해 사용되는 여러 기구들의 사용도 줄일 수 있다. 약물을 실험동물에게 투여하기 위한 절차도 감소할 것으로 예상한다. 따라서 이번 프로젝트를 통한 연구로 동물실험에 있어서의 시간적·경제적·윤리적 이득이 기대된다.
 +
 
 +
(2) 경제적, 시간적 효율성 증가
 +
  이번 프로젝트에서 마이크로-디스크 구조의 응용처 중 하나로 사용한 서열인 CpG ODN은 박테리아나 바이러스로부터 유래된 특정 염기 서열(CpG)를 갖는 핵산 서열로서, 면역세포 표면에 있는 TLR-9과 상호작용하여 체내 면역 활성화를 증가시키는 면역증가 물질이다. 이와 같이 서로 다른 두 화합물이나 분자가 특이적으로 결합하여 일어나는 반응을 이용하여 연구하는 흔한 사례로는 DNA간 결합을 위한 –싸이올기 및 -알킬기의 결합, 바이오틴과 스트렙타비딘의 결합, 클릭 화학 등이 있다.
 +
  위에 언급한 반응들은 모두 화학적 반응으로서 두 핵산 그룹을 결합시키기 위해서는 미리 하나의 그룹을 특정 표면이나 물질에 coating 또는 결합시킨 뒤 나머지 하나의 그룹을 결합시켜야한다. 핵산 기반 입자의 마이크로-디스크 구조의 제작은 특이적 화학결합을 이용하는 것이 아닌 물리적인 힘을 이용하여 핵산을 서로 묶어주는 것이므로 이와 같은 부가적인 coating process를 생략할 수 있다. 이 구조를 통해서 핵산들은 고밀도로 압축되어 생체 내 환경에서 안정성이 높을 것이라는 장점도 생기게 된다. 따라서 이 프로젝트를 통하여 재료의 절약 및 제작 단계 감축으로 인한 경제적·시간적 효율을 기대한다.
  
 
===기술개발 일정 및 추진체계===
 
===기술개발 일정 및 추진체계===

2020년 12월 16일 (수) 21:15 판

프로젝트 개요

기술개발 과제

국문 : 핵산 기반 입자의 효과적인 면역 반응 유도를 위한 마이크로-디스크 구조 제작

영문 : Fabrication of micro-disk structure for inducing effective immune response by nucleic aicd-based particles

과제 팀명

B4

지도교수

이종범 교수님

개발기간

2020년 9월 ~ 2020년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 20173400** 윤희정(팀장)

서울시립대학교 화학공학과 20163400** 배민재

서울시립대학교 화학공학과 20143400** 김우현

서울시립대학교 화학공학과 20163400** 이지현


서론

개발 과제의 개요

개발 과제 요약

핵산(Nucleic acid)을 이용한 micro-pattern disk 제작 시 핵산 입자의 효과적인 면역 반응을 위한 입자의 크기와 농도를 알아보고 disk의 향후 application을 위한 연구를 수행하는 것이 이 프로젝트의 목적이다. Gene therapy란 유전자를 이용하여 환자의 유전자부터 세포 단계, 혹은 그 이상까지를 조절하여 질병을 치료 및 완화시키는 치료법을 의미하며 생체적합성이 좋은 유전자를 이용하여 면역관련질환, 바이러스 관련질환 등을 치료할 수 있다는 점에서 주목 받고 있는 치료법이다. Cancer therapy, Immune therapy, Human-safe antiviral agent가 있으며, 이 중 Immune therapy를 목적으로 목표 유전자를 면역세포까지 안전하게 전달할 수 있다면 암에 대항하는 면역력을 높임으로써 암 치료 효능을 획기적으로 증대하고, 암이 완치된 이후 재발 방지에도 큰 효과를 보이는 것을 기대하여 본 과제를 수행한다.
핵산은 고분자로서 가지는 여러 이점(서열 특이성을 이용한 설계, 생체 내 저독성, 생분해성)들로 인해 새로운 생체 재료로써의 가능성을 인정받고 있지만 안정성이 다소 떨어진다는 것이 단점이다. 이에 대한 보완책으로 RCR(Rolling Circle Replication) 방식을 통해 핵산을 입자화하고 더 나아가 물리적인 힘으로 입자를 압축해 안정성을 더 높이기 위한 마이크로 디스크 구조를 개발하였다. 핵산 입자로 마이크로 디스크구조를 제작하고 이의 안정성과 다양한 응용에 대한 실험을 수행하는 것과 특히 핵산 중 CpG 서열을 가지는 DNA가 면역 효과에 뛰어나다고 알려져 있어 CpG DNA를 마이크로 디스크 구조로 제작해 면역제로 사용하기 위한 최적화 조건을 찾는 것이 이번 프로젝트의 목표이다.

개발 과제의 배경

1. Gene Therapy[1][2][3][4]

Gene therapy란, 유전자를 이용하여 환자의 유전자부터 세포단계 혹은 그 이상까지를 조절하여 궁극적으로 질병을 치료 및 완화시키는 치료법을 의미한다. 생체적합성이 좋은 유전자를 이용해 암이나, 면역관련질환, 바이러스 관련질환 등을 치료할 수 있다는 점에서 주목받고 있는 치료법이다. 약물을 활용한 항암치료는 chemical drug, protein drug, gene drug 순으로 발달해왔다.

섬네일을 만드는 중 오류 발생: convert: Image width exceeds user limit in IHDR `/var/www/capstone/ce/images/4/45/그림1.png' @ warning/png.c/MagickPNGWarningHandler/1672.
convert: Image height exceeds user limit in IHDR `/var/www/capstone/ce/images/4/45/그림1.png' @ warning/png.c/MagickPNGWarningHandler/1672.
convert: Invalid IHDR data `/var/www/capstone/ce/images/4/45/그림1.png' @ error/png.c/MagickPNGErrorHandler/1646.
convert: corrupt image `/var/www/capstone/ce/images/4/45/그림1.png' @ error/png.c/ReadPNGImage/4095.
convert: no images defined `/tmp/transform_e66bb889aac1.png' @ error/convert.c/ConvertImageCommand/3210.

Error code: 1

개발 과제의 목표 및 내용

1. Micro-pattern disk 제작
Micro 크기의 구멍이 균일하게 패터닝된 PDMS 기반 array를 이용하여 기능성 핵산 기반 입자를 패터닝하고, 이 과정에서 제작된 micro-disk 구조의 장점을 기반으로 핵산의 기능을 극대화하고자 한다. 핵산 중 안정성이 상대적으로 낮은 것으로 알려진 RNA로 전반적인 disk 구조의 제작 가능성 및 조건을 확인한다.


2. 핵산 입자 기반 micro-pattern disk의 면역 반응 확인

2.1 Micro-pattern disk의 혈청 내 안정성

향후 핵산 입자의 micro-pattern disk를 인체 내 drug delivery system으로 이용하고자 하는 것은 이 프로젝트의 장기적인 목표 중 하나이다. 인체를 위해 사용하는 물질의 경우 혈청 내에서의 분해 실험을 통해 분해 여부, 분해 속도로 micro-pattern disk의 안정성 여부를 파악한다.

2.2 Micro-pattern disk의 면역 반응 증가 확인

핵산을 입자화하고 더 나아가 micro-pattern disk로 제작하였을 때 면역 반응 유도 관점에서의 장점을 확인하고자 한다. 쥐의 대식세포인 RAW 264.7 세포에 처리하여 면역세포가 분비하는 단백질인사이토카인의 분비로 면역 반응이 활성화되는지의 여부를 확인한다.


3. CpG DNA 마이크로 입자

3.1 CpG DNA 마이크로 입자의 제작

인체가 가지는 DNA 중 CpG 서열은 근본적으로 바이러스나 박테리아가 가지는 것과는 그 형태가 달라 면역 활성화를 유도할 수 있는 것으로 널리 알려져있다. 핵산의 고분자로서 가지는 여러 이점 중 서열 특이성을 이용한 설계가 가능하다는 점을 이용하여 CpG 서열이 있는 DNA를 이용해 입자를 만들어 이용하고자 한다.

3.2 입자의 크기 분포 확인

반응물들의 첨가 비율이나 반응 조건에 따라 CpG DNA 마이크로 입자의 크기가 달라질 수 있으며, 형성된 마이크로 입자들의 크기는 완벽히 일치하기 힘들다. 반응물의 비율을 다르게 설정하여 얻어지는 입자의 크기 분포 양상을 여러 분석 장치를 통해 확인해본다.

3.3 Micro-pattern disk의 높이 최적화를 위한 입자 농도 측정

같은 volume의 입자 solution을 micro mesh array에 적용시킨다고 하더라고 입자의 농도에 따라 disk의 높이나 형성 양상이 달라질 것으로 예상해 disk를 제작하기 위해 사용할 입자의 농도를 측정하고자 한다.


4. Micro-pattern disk의 응용

4.1 Micro-pattern disk의 캡슐화

Drug delivery를 위한 Micro-pattern disk를 제작한다면, 이를 인체의 표적 장소에 어떻게 전달해야하는지에 대한 것도 고려해야할 사항이다. DNA 하이드로젤이 disk를 전달할 수 있는 운반체 역할을 할 수 있으며, 이를 이용하여 micro-pattern-disk의 캡슐화 작업을 진행한다.

4.2 야누스 micro-pattern disk

서로 다른 기능을 가진 입자를 사용하여 disk를 제작한다면, 하나의 disk에 두 가지 이상의 기능을 가진 micro-pattern disk를 제작해볼 수 있을 것이다. 두 가지 이상의 입자를 사용하여도 disk가 잘 만들어지는지, 하나의 입자를 사용했을 때와 비교하여 생기는 이점이 무엇일지 이미지화하여 파악한다.

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

내용

  • 특허조사 및 특허 전략 분석

내용


개발과제의 기대효과

기술적 기대효과

(1) 생체 재료(DNA 및 RNA)의 안정성 증가

이번 프로젝트의 주재료인 핵산 기반 입자는 DNA나 RNA가 생체 고분자로서 가지는 여러 이점(서열 특이성을 이용한 설계, 생체 친화성, 생분해성)들로 인해 새로운 생체 재료로써의 가능성을 인정받고 있다. 일반적인 생체 고분자로서의 기능뿐만 아니라 핵산으로 구성된 나노구조체를 이용하면 생체 내 특정 위치까지 약물을 전달하거나 면역반응을 일으키는, 혹은 압타머와 타겟의 상호작용을 인식하는 센서 등으로도 활용할 수 있다.[20]
 이러한 다양한 장점들이 존재함에도 불구하고 핵산을 기반으로 한 생체 재료들은 생체 혹은 생체 유사 환경에서 쉽게 분해된다는 점에서 상용화에 어려움이 있었다. 이중 나선 혹은 단일 나선 구조로 존재하는 핵산들과 비교하여 핵산의 회전환 복제방식(Rolling circle Replication)으로 입자를 형성하고 이 입자들을 마이크로-디스크 구조로 압축시키면, 핵산분해효소로 자를 수 있는 핵산 내 서열의 노출이 최소화되므로 생체 내 안정성이 높아지는 효과를 기대할 수 있다. 

(2) 기존의 것보다 효과 빠른 면역 유도체(백신 치료제)로의 활용

 합성된 CpG 올리고뉴클레오타이드(이하 ODN)의 DNA의 부분 서열은 면역 활성 능력에 필수적이고, 특히 이 서열의 사이토신(Cytosine)이 메틸화되었을 때에는 면역증진 활성이 사라진다는 사실이 보고되었다. 또한, 박테리아, 바이러스, 혹은 무척추동물에서 추출된 DNA는 면역증진 효과를 보이지만 어류, 포유류, 혹은 식물에서 추출된 DNA는 면역증진 효과를 나타내지 않았다. 이러한 사실로부터 CpG motif 혹은 CpG ODN의 면역활성 개념이 정립되었다. 즉, 포유류 DNA의 경우 ‘CpG 억제’ 및 사이토신의 메틸화로 인해 박테리아의 DNA에 비해 확률적으로 약 20배 적은 CpG motif를 갖고 있다는 점으로 미루어볼 때, 포유류의 면역체계가 박테리아나 바이러스 등의 병원체 등에 대처하는 하나의 수단으로써 외부 DNA, 곧 CpG DNA를 인식하여 면역 체계를 활성화 시킨다는 것이다.[21]
 따라서 마이크로-디스크 구조의 활용 방법 중 하나로 이번 프로젝트에서는, 면역 매개체로 사용할 수 있는 CpG 서열을 가진 입자[22]로 디스크 구조를 제작하고 이의 최적화 조건을 찾고자 한다. 향후 이 platform은 대식세포의 식작용 및 표면 항원 제시와 다른 면역 세포 활성 등으로 빠른 면역 체계 활성에 도움을 줄 것이라 예상한다. 이는 곧 백신의 기능이며 기존의 피하나 근육에 주사하던 방식보다 빠른 면역 반응의 효과가 있을 것이라 기대한다. 

(3) 경구용 의약품으로의 활용

 기존의 입병 곧 구내염 치료제는 상처 부위에 약을 처리하였을 때, 통증의 강도가 너무 세다거나[23] 특유의 제형으로 인해 목에 걸리는 듯한 이물감[24]으로 사용하기에 불편한 점이 있다. 이러한 제품들의 단점을 보완한 가글형[25] 및 패치형 구내염 치료제[26]가 시중에 나오게 되었고 이 때 주목할 치료제가 바로 패치형 치료제이다.
 핵산의 큰 장점 중 하나인 용이한 기능적·구조적 프로그래밍으로 치료제로 쓰일 수 있는 핵산의 서열을 합성 및 입자화, 그리고 마이크로-디스크 구조로 제작한다고 가정해보자. 이렇게 제작한 핵산 기반 약물을 패치형으로 만들어 혀 아래 및 볼 안쪽 점막에 붙여 사용한다면 약물이 소장 벽과 간을 먼저 통과하지 않고 직접 혈류로 들어가므로 다른 약물 투여 경로에 비해 빠르게 흡수될 수 있을 것이며, 이러한 구조의 핵산 기반 약물은 가닥으로 존재하는 것보다 안정성이 높아 효과적인 약물 전달을 할 수 있을 것으로 기대된다.

경제적, 사회적 기대 및 파급효과

(1) 동물실험의 간소화 및 실험동물에 관한 윤리

 의약기술이 발달하면서 인간의 수명은 과거 대비 크게 늘어났지만, 그 이면에는 수많은 실험동물의 희생이 있었다. 동물을 이용한 실험은 제약, 생명 과학, 해부학과 같은 순수 과학에서부터 응용과학의 분야까지 다양하게 활용되고 있다. 
 다양한 동물 실험 중 이들을 대상으로 하는 약물 투여 실험의 경우 가장 많이 행해지는 방법은 약물을 용매에 녹여 피하주사기를 통해 주입하는 주사(injection)이다. 이는 가장 빠르게 효과를 볼 수 있으며 사람이 실행하기 쉬워 많이 이용된다.[27] 하지만 이쯤에서 우리는 실험동물에 관한 윤리도 생각해보아야 한다. 동물들은 우리에게 표현을 하지 못할 뿐, 사람과 똑같이 아파한다. 
 실험동물로 가장 많이 쓰이는 것은 쥐를 비롯한 설치류이며 국내 동물실험의 90% 이상을 차지할 정도로 압도적이다. 약물을 입자화하여 압축시키고 마이크로-디스크 구조로 제작한다면 그 크기는 쥐의 경구투여에 알맞은 크기가 될 것이다. 이 방법을 이용한다면 쥐가 고통을 느낄 일도 줄어들고 주사하기 위해 사용되는 여러 기구들의 사용도 줄일 수 있다. 약물을 실험동물에게 투여하기 위한 절차도 감소할 것으로 예상한다. 따라서 이번 프로젝트를 통한 연구로 동물실험에 있어서의 시간적·경제적·윤리적 이득이 기대된다.

(2) 경제적, 시간적 효율성 증가

 이번 프로젝트에서 마이크로-디스크 구조의 응용처 중 하나로 사용한 서열인 CpG ODN은 박테리아나 바이러스로부터 유래된 특정 염기 서열(CpG)를 갖는 핵산 서열로서, 면역세포 표면에 있는 TLR-9과 상호작용하여 체내 면역 활성화를 증가시키는 면역증가 물질이다. 이와 같이 서로 다른 두 화합물이나 분자가 특이적으로 결합하여 일어나는 반응을 이용하여 연구하는 흔한 사례로는 DNA간 결합을 위한 –싸이올기 및 -알킬기의 결합, 바이오틴과 스트렙타비딘의 결합, 클릭 화학 등이 있다. 
 위에 언급한 반응들은 모두 화학적 반응으로서 두 핵산 그룹을 결합시키기 위해서는 미리 하나의 그룹을 특정 표면이나 물질에 coating 또는 결합시킨 뒤 나머지 하나의 그룹을 결합시켜야한다. 핵산 기반 입자의 마이크로-디스크 구조의 제작은 특이적 화학결합을 이용하는 것이 아닌 물리적인 힘을 이용하여 핵산을 서로 묶어주는 것이므로 이와 같은 부가적인 coating process를 생략할 수 있다. 이 구조를 통해서 핵산들은 고밀도로 압축되어 생체 내 환경에서 안정성이 높을 것이라는 장점도 생기게 된다. 따라서 이 프로젝트를 통하여 재료의 절약 및 제작 단계 감축으로 인한 경제적·시간적 효율을 기대한다.

기술개발 일정 및 추진체계

개발 일정

구성원 및 추진체계

설계

목표달성을 위한 설계(실험) 방법

내용

결과 및 평가

개발과제 핵심결과

내용

개발과제 평가

내용


완료 작품의 소개

포스터

포스터

개발과제 관련 향후 전망

알려져 있는 모든 생물체에 필수적인 생체 고분자인 핵산은 생체 적합성 면에서 매우 뛰어난 물질이나, 생체 내에 적용하였을 때 안정성이 좋지 못하다는 것이 큰 단점 중 하나이다. 이러한 단점을 보완하고 체내 약물 전달을 효과적으로 하기 위한 방안으로 ‘핵산의 입자화‘ 라는 방법이 이미 고안되었으나, 이 역시 안정성 면에서 한계가 있는 것이 사실이다. 한발 더 나아가 앞서 언급한 핵산 입자를 물리적인 힘으로 압축한 마이크로-디스크 형태의 구조를 개발하였고, 이는 기존의 것보다 안정성이 훨씬 뛰어나며 부가적인 재료가 들지 않아 경제적·시간적 이점이 생길 것으로 예상한다. 뿐만 아니라 핵산이 어떠한 서열을 가지고 있는지에 관계없이 사용자가 원하는 서열의 핵산은 어느 것이던지 입자화하여 마이크로-디스크로 제작할 수 있다는 점이 이전의 기술과 비교하여 가장 큰 장점이자 새로운 점이다. 이번 과제에서 얻은 면역 효과가 뛰어나다고 알려진 CpG DNA입자의 마이크로 디스크 제작의 최적 조건을 이용해 향후 실험실 단계에서의 세포나 실제 체내에 적용해 핵산 기반 약물로 사용하는 시도를 할 수 있을 것이다. 이외에도 다른 다양한 핵산 서열에 대한 마이크로 디스크 제작 기술의 최적화가 이루어진다면 새로운 의공학적인 응용의 패러다임을 제시할 수 있을 것으로 기대된다.

참고 문헌

[1] “항암 화학요법의 이해‘, 대한암협회, http://www.kcscancer.org/bbs/board.php?bo_table=info4&wr_id=5

[2] ”항암 맞춤 표적 치료“, 임호영. 삼성서울병원, http://www.samsunghospital.com/home/healthInfo/content/contenView.do?CONT_SRC_ID=27554&CONT_SRC=HOMEPAGE&CONT_ID=3655&CONT_CLS_CD=001027

[3] 한경환, “공대 교수가 쓴 면역항암제 이야기”, 2020.01.04., https://news.joins.com/article/23672790

[4] “화학요법”, 위키백과, https://ko.wikipedia.org/wiki/%ED%99%94%ED%95%99%EC%9A%94%EB%B2%95

[5] 이승우, “CpG ODN : The Novel Agent For Immunotherapy” , 포항공과대학교 생명과학과 바이러스면역학 실험실

[6] “회전 바퀴형 복제(Rolling circle replication), 분자·세포생물학백과, https://terms.naver.com/entry.nhn?docId=5568931&cid=61233&categoryId=61233

[7] Jong Bum Lee, Heejung Jung, Daieong Kim, Yoon Young Kang, Hyejin Kim, “CpG incorporated DNA microparticles ”, Royal Society of Chemistry, 2018,8, 6608-6615

[8] Kwang Jac Cho, “Therapeutic Nanoparticles for drug delivery in cancer”, Korean J Otolaryngol, 2007,50,562-72

[9] Michael G. Mohsen, Eric T. Kool “The Discovery of Rolling Circle Amplication and Rolling Circle Transcription” , HHS Public Access, 2016,49(11), 2540-2550

[10] Gunatillake, P. A., & Adhikari, R. (2016). “Nondegradable synthetic polymers for medical devices and implants”, In Biosynthetic Polymers for Medical Applications (pp. 33–62).

[11] Kyungsun, P., Kiseok, L., & Myungmo, S. (2012). “소프트 리소그래피(Soft Lithography)를 이용한 마이크로/나노 패터닝 기술”, Polymer Science and Technology, 23(6).

[12] Choi, D.-G., Yu, H. K., Jang, S. G., & Yang, S.-M. (2003). “Arrays of Binary and Ternary Particles and Their Replica Pores on Patterned Microchannels.”, Chemistry of Materials, 15(22), 4169–4171.

[13] 콜리 파마슈티칼 게엠베하, "면역 자극 활성이 증강된 소수성 T 유사체를 함유하는 CpG 올리고뉴클레오티드 유사체", 특허등록 1012517070000 (2013)

[14] 한림대학교 산학협력단, "리포좀에 포집된 올리고뉴클레오타이드 및 에피토프를 포함하는 면역증강용 조성물(Immunostimulatory Compositions Comprising Liposome―Encapsulated Oligonucleotides and Epitopes)", 특허등록 1014359530000 (2014)

[15] 한국과학기술연구원, "RCT에 의한 siRNA 다량체의 제조방법 및 상기 방법에 의하여 제조된 siRNA 다량체", 특허등록 10153305900000 (2015)

[16] 삼성전자 주식회사, “변형된 RCA 및 2차 프라이머에 의한 핵산 증폭 방법 (Amplification method of nucleic acid sequence usingmodified RCA and second primer)”, 특허출원 1020060073815(2006)

[17] Stephen KingsmoreR. Steven WiltshireJeremy P. Lambert, “Poly-primed amplification of nucleic acid sequences(핵산의 염기서열의 Poly-primed 증폭)”, 특허등록 06670126 (2003)

[18] 한국생산기술연구원, 한국기계연구원, “나노입자 패터닝 방법”, 특허등록 1020040109984 (2004)

[19] 성균관대학교산학협력단, “계층적 은나노 구조체 및 이의 제조방법”, 특허등록 1020160124482 (2016)

[20] 박해인, 김미진, 곽민석. (2015). DNA 나노구조와 혼성소재. 고분자 과학과 기술, 26(5), 423-429.

[21] Krieg, Arthur M., et al. “CpG motifs in bacterial DNA trigger direct B-cell activation.”, Nature, 374.6522(1995): 546-549.

[22] H. Jung, D. Kim, Y. Y. Kang, H Kim, J. B. Lee and H. Mok, RSC Advances, 2018, 8, 6608-6615.

[23] “다케다알보칠콘센트레이트액(폴리크레줄렌).”, 식품의약품안전처, https://nedrug.mfds.go.kr/pbp/CCBBB01/getItemDetail?itemSeq=201506617

[24] “오라메디”, 동국제약, https://dkbrand.co.kr/brand/oramedy/story.php

[25] “아프니벤큐 액.”, 코오롱제약, http://www.kolonpharm.co.kr/product/product_info_view.jsp?pk_seq=170&page=1

[26] “아프타치 정.”, 동화약품, https://www.dong-wha.co.kr/product/content.asp?t_idx=93&b=20&s=24

[27] Diehl, Kari-Heinz, et al. “A good practice guide to the administration of substances and removal of blood, including routes and volumes.”, Journal of Applied Toxicology: An International Journal 21.1(2001): 15-23.