"장재언1팀"의 두 판 사이의 차이

2019 CE
이동: 둘러보기, 검색
(개발 과제의 배경)
(개발 과제의 배경)
39번째 줄: 39번째 줄:
  
 
====개발 과제의 배경====
 
====개발 과제의 배경====
 +
 +
◇ 여러 제한적인 물질에만 쓸 수 있는 EOS과 다른 통계열역학 관점의 분자 시뮬레이션
 +
- 분자의 구조 및 분자간 힘과 같은 미시적 특성으로부터 거시적인 열역학적 물성을 계산하는 방법으로 분자 시뮬레이션 중 몬테-카를로 방법을 사용하여 열역학적 물성을 구한다.
 +
 +
- 기존에는 유기화합물의 열역학적 물성을 알기위해 여러 상태방정식을 이용했다. 흔히 알려진 상태방정식인  SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) 상태방정식은 극성이 있는 분자들에 대한 열역학적 물성에 정확한 예측이 힘들다는 단점이 있다.
 +
 +
- CO2/H2O mixture의 열역학적 물성인 heat capacity를 molecular simulation과 PR-EOS로 구한 데이터를 비교한 선행연구를 참고하였다.
 
[[파일:개발과제배경.jpg|섬네일|그림1.Simulation, NIST, EOS heat capacity 비교]]
 
[[파일:개발과제배경.jpg|섬네일|그림1.Simulation, NIST, EOS heat capacity 비교]]
 +
그림 1은 CO2/H2O mixture에서 NIST, PR-EOS, molecular simulation에 해당하는 heat capacity를 값을 각각 나타낸 그림이다. 위 그림을 통해 PR-EOS에 비해 molecular simulation의 값이 더 정확한 값을 가지는 것을 알 수 있다. 그 이유는 다음과 같다.
 +
CO2/H2O mixture는 의 분율이 낮을수록 water의 수소결합의 효과로 극성이 높아진다. 해당 데이터는 CO2 분율 0.1에서 구한 그래프로, 이는 해당 화합물이 극성의 특성을 가지는 것을 의미한다.  PR-EOS는 극성을 띄는 분자들에 대해 정확한 값을 표현하지 못하는 물질 의존적인 특성을 가진다. 이는 attractive force를 나타내는 alpha function이 극성 물질에 대한 증기압을 정확하게 나타내지 못하기 때문이다. Forero, L. A., & Velásquez, J. A. (2016). A generalized cubic equation of state for non-polar and polar substances. Fluid Phase Equilibria, 418, 74-87.
 +
따라서 실험적으로 증명된 극성 물질의 data가 존재하지 않으면 EOS를 적용하기에 부정확하다. 따라서 위와 같이 극성을 갖는 mixture에 대해 molecular simulation을 사용하여 열역학적인 물성을 구하면 EOS 방법보다 정확한 값을 구할 수 있다.
 +
 +
◇ 대중성이 있는 파이썬을 사용하여 Molecular simulation 접근성 향상
 +
- 보안성이 뛰어나 서버 특화 운영체제로 사용하는 유닉스 환경에서 텍스트 기반의 명령어인 스크립트 제어를 통해 분자 시뮬레이션 프로그램들을 구동한다. 유닉스 환경에서 구축해야한다는 점과 사용법을 익히기 어렵다는 점을 고려하면 비전문가나 연구자들이 분자 시뮬레이션 프로그램에 쉽게 접근할 수 없는 기존의 어려움이 있다. 대부분의 분자 시뮬레이션 프로그램은 유닉스 운영체제로 구동하지만 이외로 윈도우 운영체제에서 구동할 수 있는 대표적인 소프트웨어로 insilico 기업의 Material Studio가 있다. 현재 사용자들이 이용하고 있는 컴퓨터들의 운영체제가 대부분 윈도우 인 것을 고려하면 Material Studio 프로그램의 접근성이 다른 유닉스 기반 프로그램보다 훨씬 뛰어나다. 하지만 위 프로그램은 가격이 너무 비싼(약 2500만원) 치명적인 단점이 있다. 따라서 윈도우 운영체제에서 구동할 수 있어 접근성이 뛰어나고 대중성이 뛰어난 파이썬 기반의 Molecular simulation을 개발한다.
  
 
====개발 과제의 목표 및 내용====
 
====개발 과제의 목표 및 내용====

2022년 12월 9일 (금) 20:47 판

프로젝트 개요

기술개발 과제

국문 : 파이썬 환경에서 몬테카를로 알고리즘을 이용한 아르곤, 메테인, 에테인의 분자 시뮬레이션

영문 : Molecular simulation of Argon, Methane, Ethane with Monte Carlo algorithm in Python

과제 팀명

장재언 1팀

지도교수

장재언 교수님

개발기간

2022년 9월 ~ 2022년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 2017340042 정성민(팀장)

서울시립대학교 화학공학과 2017340009 김정인

서울시립대학교 화학공학과 2017340037 이종범

서울시립대학교 화학공학과 2017340047 최영근

서론

--

개발 과제의 개요

개발 과제 요약

◇ 몬테카를로 알고리즘을 파이썬 환경에서 구현
◇ 분자 시뮬레이션을 위한 몬테카를로 코드 작성
◇ 기존 EOS로 예측이 어려운 분자들에 대한 물성 예측
◇ 실험결과와 시뮬레이션 결과 비교
◇ 프로그램 편의성을 개선시키기 위한 GUI개발

개발 과제의 배경

◇ 여러 제한적인 물질에만 쓸 수 있는 EOS과 다른 통계열역학 관점의 분자 시뮬레이션 - 분자의 구조 및 분자간 힘과 같은 미시적 특성으로부터 거시적인 열역학적 물성을 계산하는 방법으로 분자 시뮬레이션 중 몬테-카를로 방법을 사용하여 열역학적 물성을 구한다.

- 기존에는 유기화합물의 열역학적 물성을 알기위해 여러 상태방정식을 이용했다. 흔히 알려진 상태방정식인 SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) 상태방정식은 극성이 있는 분자들에 대한 열역학적 물성에 정확한 예측이 힘들다는 단점이 있다.

- CO2/H2O mixture의 열역학적 물성인 heat capacity를 molecular simulation과 PR-EOS로 구한 데이터를 비교한 선행연구를 참고하였다.

파일:개발과제배경.jpg
그림1.Simulation, NIST, EOS heat capacity 비교
그림 1은 CO2/H2O mixture에서 NIST, PR-EOS, molecular simulation에 해당하는 heat capacity를 값을 각각 나타낸 그림이다. 위 그림을 통해 PR-EOS에 비해 molecular simulation의 값이 더 정확한 값을 가지는 것을 알 수 있다. 그 이유는 다음과 같다.

CO2/H2O mixture는 의 분율이 낮을수록 water의 수소결합의 효과로 극성이 높아진다. 해당 데이터는 CO2 분율 0.1에서 구한 그래프로, 이는 해당 화합물이 극성의 특성을 가지는 것을 의미한다. PR-EOS는 극성을 띄는 분자들에 대해 정확한 값을 표현하지 못하는 물질 의존적인 특성을 가진다. 이는 attractive force를 나타내는 alpha function이 극성 물질에 대한 증기압을 정확하게 나타내지 못하기 때문이다. Forero, L. A., & Velásquez, J. A. (2016). A generalized cubic equation of state for non-polar and polar substances. Fluid Phase Equilibria, 418, 74-87.

따라서 실험적으로 증명된 극성 물질의 data가 존재하지 않으면 EOS를 적용하기에 부정확하다. 따라서 위와 같이 극성을 갖는 mixture에 대해 molecular simulation을 사용하여 열역학적인 물성을 구하면 EOS 방법보다 정확한 값을 구할 수 있다.

◇ 대중성이 있는 파이썬을 사용하여 Molecular simulation 접근성 향상 - 보안성이 뛰어나 서버 특화 운영체제로 사용하는 유닉스 환경에서 텍스트 기반의 명령어인 스크립트 제어를 통해 분자 시뮬레이션 프로그램들을 구동한다. 유닉스 환경에서 구축해야한다는 점과 사용법을 익히기 어렵다는 점을 고려하면 비전문가나 연구자들이 분자 시뮬레이션 프로그램에 쉽게 접근할 수 없는 기존의 어려움이 있다. 대부분의 분자 시뮬레이션 프로그램은 유닉스 운영체제로 구동하지만 이외로 윈도우 운영체제에서 구동할 수 있는 대표적인 소프트웨어로 insilico 기업의 Material Studio가 있다. 현재 사용자들이 이용하고 있는 컴퓨터들의 운영체제가 대부분 윈도우 인 것을 고려하면 Material Studio 프로그램의 접근성이 다른 유닉스 기반 프로그램보다 훨씬 뛰어나다. 하지만 위 프로그램은 가격이 너무 비싼(약 2500만원) 치명적인 단점이 있다. 따라서 윈도우 운영체제에서 구동할 수 있어 접근성이 뛰어나고 대중성이 뛰어난 파이썬 기반의 Molecular simulation을 개발한다.

개발 과제의 목표 및 내용

내용

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황

내용

  • 특허조사
◇ 순수한 화합물의 물리화학적 및 열역학적 성질을 예측,프로세스 및 온라인 서비스하는 모델,방법 및 시스템

국제공개번호 : WO2012/177108 A3 발명자 : 성애리 특징 : 수소(H), 탄소(C), 질소(N), 산소(O), 황(S) 등 5가지 이내의 원소로 구성되고 수소를 제외한 원자의 개수가 25개 이하인 분자로 이루어진 순수한 유기화합물의 물리화학적 및 열역학적 물성을 예측하는 온라인 서비스 모델. 실험값이 알려지지 않은 조건의 유기화합물에 대해서도 값을 예측할 수 있다.

◇ SYSTEM AND METHOD FOR SIMULATING THE TIME-DEPENDENT BE HAVIOUR OF ATOMI AND/OR MOLECULAR SYSTEMS SUBJECT TO STATIC OR DYNAMIC FIELDS

국제공개번호 : US 2008/0147360 A1 발명자 : Anthony Peter Fejes, John Silvlo Vieceli, Shayan Rahnama, Ganesan Swaminathan 특징 : 하나 또는 혼합 분자 시스템, 입자들의 집합을 통해 입자 간의 상호작용을 측정한다. 두 입자를 통해 위치와 에너지 정보를 측정할 수 있고 그중 하나는 시뮬레이션을 통한 전체 분자의 시스템을 분석하는 것에 사용된다. 하나 또는 그 이상의 분자를 포함하는 원자 및 분자를 포함하여 시뮬레이션이 가능하며 여러 시간 척도에 따라 연관된 분자들 또는 원자들을 시스템에 적용해 분석할 수 있다.

  • 특허전략
◇ 대중성 있는 파이썬에 시뮬레이션 코드를 구현함으로써 시장성 확보
◇ 코드 최적화를 통해 CPU time을 감소시켜 사용자의 작업속도를 향상할 수 있어 경쟁력 확보
◇ 여러 기능을 탑재하여 가격이 비싼 타사 프로그램에 비해 한정된 기능을 제공하지만, 상대적으로 접근성이 높고 가격이 저렴한 프로그램의 개발

개발과제의 기대효과

기술적 기대효과

◇ Monte carlo canonical ensemble을 이용해 내부에너지, 압력 같은 물성을 통계 열역학 관점에서 도출할 수 있다.
◇ 기존 프로그램들의 경우 포트란을 사용하기 때문에, 수정하려면 특수한 운영체제(리눅스 등)가 필요하다. 하지만 본 프로그램의 경우 대중성 있는 컴파일러인 파이썬을 이용해 소스코드를 열어둠으로써 사용자가 쉽게 접근할 수 있어 원하는 대로 일부 수정할 수 있다.
◇ 현재 제작하는 코드의 틀은 파이썬으로, 라이브러리가 다양하여 여러 기능을 사용할 수 있어 알아내고자 하는 결과 값에 따라 시뮬레이션 기능을 추가하여 성능을 향상시킬 수 있다.
◇ 개발된 기술을 활용해 알고리즘을 적용한 프로그램을 통계열역학과 접목하여 적용 범위를 확대하고 기술 활용 능력을 발전시킨다.

경제적, 사회적 기대 및 파급효과

◇ 프로그램을 구매한 학생들에게 코드를 제공해 코드를 분석할 기회를 제공한다. 또한 상대적으로 코딩 지식이 부족한 학생들은 프로그래밍을 익히고 코드의 실행 원리를 파악해 통계 열역학적 사고를 이해하고 해석하는 도구로 활용할 수 있다. 특히 코딩 관련 강의가 적은 학생들의 경우, 실험 수업 등에 활용하며 학습 효과를 높일 수 있다.
◇ 이용자들이 쉽게 접근할 수 있는 보다 값싼 프로그램을 제작하여 분자 시뮬레이션 프로그램 활용의 진입장벽을 낮출 수 있다. 특히 고가의 분자 시뮬레이션 프로그램을 구매하기 어려운 많은 학생이 프로그램을 이용하여 통계 열역학적 분석 및 코딩에 대한 학습을 통해 통계적 지식을 함양하여 잠재적인 이익을 극대화할 수 있다.

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

내용

설계

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

완료작품의 평가

내용

향후계획

내용