집Geo조

2019 CE
2019Geo (토론 | 기여)님의 2019년 12월 3일 (화) 18:14 판 (1. Experimental)
이동: 둘러보기, 검색

프로젝트 개요

기술개발 과제

국문 : 석탄 비산재 기반 지오폴리머에 석탄 바닥재를 잔골재로써 활용하는 방안에 대한 연구

영문 : Use of Coal Bottom Ash as Fine Aggregate in Coal Fly Ash-Based Geopolymer

과제 팀명

집Geo

지도교수

김효 교수님 문홍철 교수님

개발기간

2019년 9월 ~ 2019년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 20163400** 허*회(팀장)

서울시립대학교 화학공학과 20143400** 김*안

서울시립대학교 화학공학과 20163400** 고*아

서울시립대학교 화학공학과 20163400** 전*영

서론

개발 과제의 개요

개발 과제 요약

◇ 석탄 비산재, 석탄 바닥재, 그리고 알칼리 활성화제의 다양한 배합에 따른 혼합물 상태 변화 관찰과 고체 농도와 압축 강도 측정.
◇ 합성된 지오폴리머의 재령 1일과 28일 에서의 압축 강도 변화와 시편의 질량 변화 측정. 
◇ 합성된 지오폴리머 시편의 SEM 이미지를 통한 계면전이구역(ITZ) 관찰 및 압축 강도에 미치는 영향 분석.
◇ 고체 농도와 압축 강도의 경향성 비교와 최적의 배합비 도출.
◇ 최적의 배합비에서 바닥재 대신 모래골재가 첨가된 경우와 비교하여 기존의 모래 골재를 대체 할 수 있는 가능성 평가.

개발 과제의 배경

◇ 현대의 건물, 다리, 도로 및 댐 등의 건축물과 기반시설들은 대부분 시멘트를 기반으로 하여 만들어졌다. 시멘트란 물과 같은 다른 물질과 반응하여 스스로 또는 다른 물질을 결합시키면서 경화되는 무기물 결합재를 총칭한다. 시멘트는 원료가 풍부하고 생산 방식도 간단하지만, 그 제조 과정은 매우 에너지 집약적이어서 많은 양의 이산화탄소가 배출된다는 문제가 있다. 실제로 2016년 전 세계의 시멘트 산업에서 배출된 이산화탄소는 약 22억톤으로 전체 이산화탄소 배출량의 약 8%를 차지하였다. 또한 최근 지구온난화문제가 대두되면서 시멘트 산업이 주요 이산화탄소 배출 산업으로 지적받고 있다.
◇ 이러한 시멘트를 대체할 물질로 주목받고 있는 것이 지오폴리머이다. 지오폴리머는 실리카와 알루미나 성분이 풍부한 유리질 형태의 원료 물질이 강알칼리 수용액에 의해 활성화 반응을 일으켜 합성된 alumino silicate의 3차원 무기결합물질이다. 지오폴리머의 원료에는 석탄재, 슬래그, 메타카올린 등이 있다. 그 중 석탄재는 석탄 화력발전소에서 석탄이 연소된 후 모아지는 부산물로, 집진기를 통해 모아지는 비산재(fly ash)와 바닥재(bottom ash)로 나뉜다. 비산재는 구형의 입자로 낮은 입도를 가지며 반응성이 높아 연구가 활발히 진행되었고, 발생량의 대부분이 활용되고 있다. 반면 바닥재는 비산재와 그 성분이 비슷함에도 불구하고 불규칙하고 각진(angular) 입자이며 입도가 크기 때문에 원료물질로 사용되기 어렵고, 연구가 많이 되지 않았다. 실제로 한국남동발전의 석탄회 발생 현황에 따르면 2018년 한해 발생한 석탄재 중 비산재는 79.07%가 재활용되었고 17.55%가 매립된 반면 바닥재의 경우 76.59%가 매립되었다. 석탄재의 매립은 토양 및 수질 오염 뿐만 아니라 매립비용 문제, 매립지 부족 등 많은 어려움을 발생시키고 있다.
◇ 골재는 콘크리트나 모르타르를 만드는 데 쓰는 모래나 자갈과 같은 입상의 재료이다. 골재는 그 크기에 따라 잔골재(fine aggregate)와 굵은 골재(coarse aggregate)로 나뉜다. 골재는 1990년대에는 주로 하천 골재가 쓰였지만 2000년대 이후 대부분 고갈되어 산림골재나 바다골재가 쓰이고 있다. 하지만 토석의 채취 과정에서 환경 파괴, 날림먼지, 진동 및 소음, 그로 인한 주민 생활환경 피해, 강우 시 토사유출 등 매우 많은 환경 문제를 일으키고 있다. 또한 이러한 환경적 요인에 의한 규제가 강화되면서 골재업체의 채산성도 악화되고 있는 실정이다.
◇ 바닥재는 분쇄나 체거름을 통해 입도를 낮춘 후 결합재로써 쓰이거나, 골재로써 활용될 수 있다. 현재 바닥재는 별도의 공정을 거쳐 인공 경량 골재로 생산되고 있는데, 바닥재와 준설토를 혼합하여 1000℃ 이상의 고온에서 소성하는 과정을 공정을 거치기 때문에 많은 양의 에너지가 들어간다. 그 외에도 시멘트나 콘크리트, 또는 비산재에 바닥재를 첨가하여 연구가 진행된 바 있다. 하지만 이들 연구에서는 기존 골재의 일부만을 치환하였기 때문에 100% 치환되었을 때 물성의 변화를 알 수 없다. 또한 주로 액상과 고상의 비를 고정한 채 고상의 배합만 변화시켰기 때문에 액상/고상의 비와 고상의 배합이 동시에 고려되어 나타나는 물성에 대해선 밝혀진 바 없다. 일부 연구에서는 비산재에 바닥재를 잔골재로써 첨가하여 물성이 조사되었지만, 바닥재의 조립률(fineness modulus)이 ASTM C33의 잔골재 기준에 맞지 않아 직접적인 비교가 어렵다.

개발 과제의 목표 및 내용

◇ 고강도 콘크리트의 압축 강도 기준인 40 MPa 이상 달성
◇ 우수한 압축 강도를 가지면서도 알칼리 활성화제를 최소로 하는 경제적인 배합비 도출
◇ 기존 모래 골재와 비교를 통해 잔골재로써 대체 가능성 평가
◇ 계면 전이 구역의 관찰과 압축 강도에 미치는 영향 분석

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황
◇ 바닥재를 활용하는 방안으로는 크게 두 가지가 있다. 첫 번째는 바닥재 입자를 볼밀과 같은 분쇄기로 충분히 입도를 낮추거나 체(Sieves) 거름으로 입도가 낮은 바닥재 입자만 분리하여 결합재로써 활용하는 것이다. 바닥재는 비산재와 성분이 유사하지만 입자가 크고 모양이 불규칙하여 반응성이 낮다는 점에 착안한 것으로 이에 대한 연구가 몇 차례 진행된 바 있다. 기존 연구들에 따르면 충분한 분쇄로 바닥재의 입도가 낮아질수록, 그리고 체거름을 통해 입도를 낮출수록 합성된 지오폴리머의 압축 강도는 향상되었다.
◇ 바닥재를 활용하는 두 번째 방법으로는 골재로써 활용하는 것이다. 바닥재 입자는 기존에 사용되던 모래나 자갈 보다는 가볍고 흡수성이 있어 하중을 버텨내기에 우려된다. 그래서 바닥재에 대한 연구는 대부분 입도를 낮추어 결합재로써 활용하거나 시멘트에 기존 골재의 소량만 치환하여 첨가하는 것에 대해 이루어졌다. 하지만 소수의 연구에서는 골재를 바닥재로 100% 치환하기도 하였는데, 콘크리트에 바닥재를 잔골재와 굵은 골재로써 100% 치환한 연구에서는 굵은 골재가 바닥재로 치환되는 양이 많아짐에 따라 슬럼프는 감소하였지만 압축 강도는 바닥재의 치환율에 크게 영향을 받지 않아 골재로써 활용이 가능함이 확인되었다. 또한 시멘트를 전혀 사용하지 않고 비산재에 바닥재 골재를 사용함으로써 제작된 모르타르의 강도가 연구된 바 있으나, 바닥재 함량이 커짐에 따라 압축 강도는 감소하는 경향을 보였다. 하지만 이 연구에서는 들어가는 알칼리 용액의 비율을 고정시켰기 때문에 바닥재의 함량에 따라 변화하는 혼합물의 특성을 충분히 고려하지 못한 것으로 판단된다. 또한 바닥재의 조립률이 ASTM C33의 기준에 맞지 않기 때문에 결론내리기 어렵다. 종합하자면 시멘트를 전혀 활용하지 않고 비산재와 바닥재로 합성된 지오폴리머의 특성은 액상/고상의 비와 고상의 배합비가 동시에 고려되어야 하며 이에 대한 연구는 보고된 바 없다.
  • 특허조사 및 특허 전략 분석

- 특허조사

◇ 모래를 대체할 수 있는 지오폴리머 과립 제조방법 (PREPARING METHOD OF GEOPOLYMER GRANULE FOR REPLACING SAND)
화력발전소에서 배출된 석탄 비산재를 원료로 사용하여 모래를 대체할 수 있는 300㎛~1.7mm 크기의 지오폴리머 과립(granule)을 제조하는 방법을 개시하였다. 본 발명은 실리카(SiO2) 및 알루미나(Al2O3)를 주성분으로 하는 비산재 및 알칼리 자극 용액(alkali activating liquid)을 회전 믹서에 투입 및 믹싱하여 과립을 제조한 후 상기 과립을 경화시켜 입도 300㎛~1.7mm(전체 과립의 95중량% 이상)인 지오폴리머 과립을 제조하는 방법을 제공한다.
◇ 바닥재의 지오폴리머 반응을 이용한 친환경 에코벽돌의 제조방법 (The manufacturing method of environmentally friendly eco brick containing geopolymerization of bottom ash)
화력발전소 보일러로부터 연소 후 발생한 바닥재(bottom ash)를 지오폴리머 반응을 이용하여 친환경 에코벽돌을 제조하는 방법에 관한 것이다. 본 발명은 화력발전소의 바닥재를 미립자로 분쇄하고, 이 미립자 바닥재를 알칼리성 자극제와 혼합하여 가압성형 및 양생함으로써 친환경적이며 압축강도가 우수한 에코 벽돌을 제조하는 방법에 관한 것이다.
◇ 플라이 애시 지오폴리머를 이용한 고강도 콘크리트 조성물 및 그 콘크리트 제품의 제조방법 (Method for production of high strength concrete using fly ash geopolymer)
지오폴리머 반응에 의한 플라이 애시 모르타르와 바텀 애시, 제강 슬래그, 동제련 슬래그, 니켈제련 슬래그 등의 산업부산물을 골재로 이용한 고강도 콘크리트 조성물 및 그 콘크리트 제품의 제조하는 방법에 관한 것이다. 본 특허의 방법에 의해 제조된 제품은 종래의 시멘트 콘크리트에 비하여 기계적강도, 내산성, 단열성, 비독성, 저수축율, 저알칼리 골재반응, 및 중금속 포획성 등의 물성이 우수한 효과를 얻을 수 있다.

- 특허전략

◇ 우수한 압축 강도를 가지면서도 알칼리 활성화제를 적게 필요로 하는 프리캐스트 형식의 무시멘트 지오폴리머 모르타르이다.
◇ 경화나 소성 과정 없이, 그리고 첨가제 없이 체 거름과 선별된 입도별 배합 과정을 통해 비교적 간단하게 골재를 만들 수 있다.
◇ 바닥재 골재 함량에 따라 혼합물 특성이 변하므로 우수한 압축 강도를 발현하기 위해 바닥재의 함량 별로 필요한 적정량의 알칼리 활성화제 배합을 제시한다.
  • 기술 로드맵

내용

시장상황에 대한 분석

  • 경쟁제품 조사 비교

내용

  • 마케팅 전략 제시

내용

개발과제의 기대효과

기술적 기대효과

◇  고체농도(solid concentration)은 입자들의 쌓임 상태를 나타내는 지표로, 시편에 들어간 고체 입자들의 부피/전체 bulk한 시편의 부피로 정의된다. 즉 일정 시편 안에 고체 입자가 차지하는 부피를 나타내는 값으로 굵은 입자/고운 입자, 액상/고상의 질량 또는 부피비에 따라 달라진다. 최대 고체농도를 충전 밀도(packing density)라고 정의할 때, 충전 밀도를 가지는 시편에서 고체 입자는 가장 효율적으로 쌓여 치밀한 구조를 가진다. 따라서 본 연구에서는 바닥재, 비산재, 그리고 알칼리 활성화제의 배합에 따라 충전 밀도를 가지는 배합을 도출하며, 이 배합에서 압자 사이 구조가 가장 치밀해지므로 강한 압축 강도가 발현될 것이라고 기대한다.

Itz.jpg 콘크리트에서 골재와 시멘트 사이에 나타나는 계면변화구역

◇ 기존 시멘트를 기반으로 하는 모르타르나 콘크리트에서는 시멘트 매트릭스와 골재의 경계에서 불연속적인 구간이 관찰된다. 이 구간은 물리적, 화학적으로 불연속적이기 때문에 구조에 압력이 가해질 때 이 구역에서부터 크랙이 발생하며 따라서 구조적으로 취약한 부분이다. 이러한 불연속구간을 계면 전이 구역(Interfacial transition zone, ITZ)라고 한다. 석탄 비산재 기반 지오폴리머에 바닥재를 첨가할 경우 바닥재 또한 표면에서 지오폴리머 반응이 약하게나마 일어나기 때문에 비산재와 바닥재의 경계에 이러한 ITZ를 형성되지 않고 연속적인 구조를 가질 것으로 기대된다. 또한 연속적인 구조를 가짐으로써 압축 강도 발현에 기여할 것이라고 기대된다. 
◇ 바닥재는 기존의 모래 잔골재보다 가벼우므로 가벼운 건축자재로써 활용될 수 있다. 치밀하게 합성된 지오폴리머의 양생 전 혼합물 상태는 흐름성이 없기 때문에 프리캐스트 형식의 보도블럭, 호안블럭, 조적벽돌 등의 자재로써 활용될 수 있다.

경제적, 사회적 기대 및 파급효과

◇ 시멘트 제조 과정중 하나인 클링커 소성 과정에서 많은 양의 이산화탄소가 배출되는데, 2016년 기준 시멘트 산업의 이산화탄소 배출량은 22억 톤으로 전체 이산화탄소 배출량의 5~8%를 차지한다. 시멘트의 대체재를 개발함에 따라 세계적 현안인 온실가스의 배출을 줄이고 이를 통하여 지구온난화를 완화할 수 있을 것으로 기대된다.   
◇ 매립에 의한 토양 및 수질오염 문제와 매립지 부족 문제를 해결할 수 있다. 또한 골재의 고갈문제를 해소하고 골재 채취로 인해 발생하는 막대한 환경 오염 및 인근 주민에 발생하는 문제들을 줄일 수 있다. 
◇ 비산재와 바닥재 모두 산업 부산물이기 때문에 매우 경제적이다. 한국건설기술연구원의 보고서에 따르면 Fig. 2에서 볼 수 있듯이 시멘트 기반의 콘크리트보다 바닥재 기반의 콘크리트가 훨씬 경제적임을 알 수 있다. 

바닥재 콘크리트와 시멘트 콘크리트의 강도별 제조비용 비교.jpg 바닥재 콘크리트와 시멘트 콘크리트의 강도별 제조비용 비교

기술개발 일정 및 추진체계

개발 일정

캡처.jpg

구성원 및 추진체계

Example.jpg

설계

설계사양

제품의 요구사항

내용

설계 사양

내용

개념설계안

파일:지오폴리머 매커니즘 실험방법.jpg

실험방법은 다음과 같습니다. 1. 2. 3. ...

이론적 계산 및 시뮬레이션

고체농도.jpg 쌓임밀도.jpg 효과들.jpg 압축강도.jpg

상세설계 내용

1. Experimental

(1) Purposes

- Optimum CBA/CFA ratio & L/S ratio
- Possibility of bottom ash to utilize as a substitute of sand aggregate

(2) Experiment design 실험변수.jpg

(3) Methods

위에 첨부

(4) Materials

1) Coal fly ash
첫번째 fly ash의 입도 분포는 Fig 14에 나타나 있습니다. Mean size는 19.90 마이크로미터로, 오른쪽 SEM 사진에서 볼 수 있듯이 구형의 모양을 가진 입자입니다.
비산재 입도분포.jpg
비산재 SEM.jpg
2) Coal bottom ash
Bottom ash는 ASTM C33의 잔골재 기준에 따라 제작되었고, 오른쪽 사진에서처럼 각지고 불규칙적인 입자입니다.

바닥재.jpg 바닥재 SEM.jpg

Table 2에 나타난 XRF에서는 bottom ash와 fly ash에 지오폴리머 합성에 필요한 물질인 실리카와 알루미나가 풍부한 것을 볼 수 있습니다.
표2.jpg
3) Alkali activator
14 M sodium hydroxide solution.

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용