피카츄H
프로젝트 개요
기술개발 과제
국문 : 00000000..
영문 : 00000000..
과제 팀명
피카츄H
지도교수
이두환 교수님
개발기간
2019년 3월 ~ 2019년 6월 (총 4개월)
구성원 소개
서울시립대학교 환경공학부·과 20178900** 문**(팀장)
서울시립대학교 화학공학부·과 20173400** 안**
서론
개발 과제의 개요
개발 과제 요약
내용
개발 과제의 배경
내용
개발 과제의 목표 및 내용
내용
관련 기술의 현황
관련 기술의 현황 및 분석(State of art)
- 전 세계적인 기술현황
내용
- 특허조사 및 특허 전략 분석
내용
- 기술 로드맵
내용
시장상황에 대한 분석
- 경쟁제품 조사 비교
내용
- 마케팅 전략 제시
내용
개발과제의 기대효과
기술적 기대효과
내용
경제적, 사회적 기대 및 파급효과
내용
기술개발 일정 및 추진체계
개발 일정
내용
구성원 및 추진체계
내용
설계
설계사양
제품의 요구사항
내용
설계 사양
내용
개념설계안
내용
이론적 계산 및 시뮬레이션
내용
상세설계 내용
내용
결과 및 평가
완료 작품의 소개
프로토타입 사진 혹은 작동 장면
내용
포스터
내용
관련사업비 내역서
내용
완료작품의 평가
내용
향후계획
내용
참고문헌
[1] 두산, 연료전지, http://www.doosanmobility.com/kr/technology/tech_01/ (2020.10.12. 접속)
[2] 신재생에너지 백서 (2016), 신재생에너지 원별 기술동향 제3편 제2장 제2절 연료전지
[3] Na, S. M., Park, H. G., Kim, S. W., Cho, H. H., & Park, K. (2020). 기획특집 : 차세대 리튬이온전지 핵심 기술 리튬이온전지 ( Lithium Ion Battery ) 양극 물질 연구동향 Research Trends of Cathode Materials for Next Generation Lithium Ion Battery. 23(1), 3–17.
[4] Andhini. (2017). Automotive Li-Ion Batteries: Current Status and Future Perspectives. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
[5] Quinn, J. B., Waldmann, T., Richter, K., Kasper, M., & Wohlfahrt-Mehrens, M. (2018). Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. Journal of The Electrochemical Society, 165(14), A3284–A3291.
[6] Chen, X., Shen, W., Vo, T. T., Cao, Z., & Kapoor, A. (2012). An overview of lithium-ion batteries for electric vehicles. 10th International Power and Energy Conference, IPEC 2012, 230–235. https://doi.org/10.1109/ASSCC.2012.6523269
[7] Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy, 34(15), 6005–6020.
[8] Hyun Tae Hwang, Arvind Varma (2014), Hydrogen storage for fuel cell vehicles, Current Opinion in Chemical Engineering, Volume 5, 2014, Pages 42-48.
[9] Godula-Jopek, W. Jehle, and J. Wellnitz (2012), Hydrogen Tank: Based on values from Table 6.21, page 220 of A. . Hydrogen Storage Technologies, New Materials, Transport and Infrastructure, John Wiley & Sons.
[10] 대학생 신재생 에너지기자단(김태환), 2016.05.11. https://renewableenergyfollowers.org/1789, (2020.11.25. 접속)
[11] Bruno G. Pollet, Iain Staffell, Jin Lei Shang (2012), Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochimica Acta, Volume 84, Pages 235-249.
[12] Li, M., Zhang, X., & Li, G. (2016). A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy, 94(2016), 693–704. https://doi.org/10.1016/j.energy.2015.11.23.
[13] 한국전력공사 KEPCO (2019). 한전, 발전 5개사, 민간 4개사(포스코에너지, GS EPS, GS POWER, 씨지앤율촌) 화력발전 실적
[14] 한국전력공사(2019),「20년도판 한국전력통계(제89호)」
[15] 산업통상자원부. (2017). 재생에너지 3020 이행계획 ( 안 ) 2017. 12.
[16] Choi, W., Yoo, E., Seol, E., Kim, M., & Song, H. H. (2020). Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea. Applied Energy, 265(February), 114754.
[17] Barelli, L., Bidini, G., Gallorini, F., & Servili, S. (2008). Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy, 33(4), 554–570. https://doi.org/10.1016/j.energy.2007.10.18.
[18] Wang, M. Q., & Huang, H. S. (1999). A Full Fuel-Cycle Analysis of Energy and Emissions Impacts of Transportation Fuels Produced from Natural Gas. U.S. Department of Energy, ESD(40), 88. http://www.doe.gov/bridge
[19] Ren, L., Zhou, S., & Ou, X. (2020). Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China. Energy, 209, 118482. https://doi.org/10.1016/j.energy.2020.118482
[20] Stiegel, G. J., & Ramezan, M. (2006). Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology, 65(3–4), 173–190.
[21] KAIA insight (황문현), 수소도시의 시대가 도래하다. https://www.kaia.re.kr/webzine/2018_04/sub/sub1.html (2020.12.09.접속)
[22] 저공해차 통합누리, https://www.ev.or.kr/portal, (2020.12.02.접속)
[23] TESLA, https://www.tesla.com/findus/list/superchargers/South%20Korea?redirect=no, (2020.12.02.접속)
[24] Liu, Y., Lin, H., Yu, W., Luyao, L., Sun, Q., & Wennersten, R. (2018). Influence of the Electric vehicle battery size and EV penetration rate on the potential capacity of Vehicle-to-grid. Energy Procedia, 152, 630–635. https://doi.org/10.1016/j.egypro.2018.09.222
[25] Gröger, O., Gasteiger, H. A., & Suchsland, J.-P. (2015). Review—Electromobility: Batteries or Fuel Cells? Journal of The Electrochemical Society, 162(14), A2605–A2622. https://doi.org/10.1149/2.0211514jes
[26] 김화년(2017), 세계 석탄 규제 현황과 영향 전망, Korea Energy Economics Institute
[27] Yoo, E., Kim, M., & Song, H. H. (2018). Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea. International Journal of Hydrogen Energy, 43(41), 19267–19278. https://doi.org/10.1016/j.ijhydene.2018.08.088