3조
프로젝트 개요
기술개발 과제
딥러닝 기반 지하철 문 끼임 사고 방지 시스템 구축
(Establishment of a deep learning based system preventing subway door jamming accident)
과제 팀명
문열어조
지도교수
문영일 교수님
개발기간
2022년 3월~ 2022년 6월 (총 4개월)
구성원 소개
서울시립대학교 토목공학과 20178600** 전*훈(팀장)
서울시립대학교 토목공학과 20198600** 김*민
서울시립대학교 토목공학과 20178600** 김*운
서울시립대학교 토목공학과 20178600** 김*현
서울시립대학교 토목공학과 20178600** 백*열
서울시립대학교 토목공학과 20178600** 현*호
서론
개발 과제의 개요
개발 과제 요약
개발 과제의 배경
◇ 최근 6년 간 서울 지하철 출입문 끼임 사고는 1560여건, 한 달 평균 23건씩 발생하였다. 출입문에 스크린 도어가 설치되어 있음에도 불구하고 지름 7.5mm 이하 물체의 끼임은 감지하지 못하며, 아래쪽에는 센서가 없어 오래된 지하철의 경우 신발이나 유모차 바퀴가 끼이는 걸 감지하지 못하는 경우도 있다.
◇ 출입문 사고는 전체 지하철 사고의 29.1~38.8%를 차지한다. 또한, 이러한 출입문 사고유형에서 출입문 끼임 사고가 89%로 대부분이다. 무리한 승차로 부상을 당하거나 물건들이 파손되는 사례가 많고 피해보상에서도 출입문 끼임 사고가 39%를 차지한다.
개발 과제의 목표 및 내용
◇ 지하철 CCTV사진과 딥러닝을 활용하여 지하철 탑승객의 모습을 실시간으로 모니터링하고, 물체가 끼었지만 스크린 도어가 열리지 않는 위험한 상황 시에 이를 경고해줄 수 있는 시스템을 개발하고자 하였다.
◇ 이 시스템은 사람들의 비정상적인 거동을 라벨링하여 딥러닝 모델을 개발 및 구축함으로써 지하철 출입문 끼임 사고를 줄이고 만약 사고가 발생하여도 확실하고 신속한 상황 대처를 할 수 있도록 한다.
관련 기술의 현황
State of art
◇ 스크린도어를 제어하는 방식 - ATO 방식: 열차 제어 방식(ATC)와 연동하는 방식으로, 선로에 설치된 사진을 통해 열차의 위치 정 보를 관제 시스템에 전송한 후 시스템을 통해 자동으로 스크린도어를 열거나 닫는 방식이다. - R/F 방식: 스크린도어와 운전실에 설치된 RF 장치 간의 무선 연결을 통해 스크린 도어를 제어하는 방식이다. ATO 방식과는 달리 수동적인 방식이다. - 출입문 검지 센서 방식: 출입문 상부에 설치된 열차 검지 센서를 통해 스크린도어를 제어하는 방식으로, 열차의 문이 닫히면 센서가 닫힌 문을 감지하여 스크린 도어가 닫히는 원리다.
현재 대부분의 스크린도어는 ATO방식을 사용하며 수도권 일부 구간에서만 RF방식과 출입문 검지 센서 방식을 사용한다.
기술 로드맵
<스마트 시티-AI기반의 CCTV 시스템> 중소벤처기업부에서는 중소기업 분야별 전략기술로드맵을 제시하고 있으며, ‘AI 기반의 스마트 CCTV 시스템’을 스마트시티 분야의 핵심기술로 포함한다. AI 기반의 스마트 CCTV 시스템은 컴퓨터가 영상을 자동으로 분석해 특정 상황(재난, 범죄 등) 발생 시 자동으로 이를 알려주는 시스템이다. 다중의 CCTV 카메라 동영상에서 사람을 탐지하고, 타겟으로 선정된 사람이 포함된 CCTV 영상을 재인식하고, 재인식된 영상의 시간, 위치 등 메타데이터 정보를 활용하여 타겟의 이동시간 및 경로를 추적한다. 이러한 기술은 통합관제 및 솔루션 기술을 중점으로 기술개발이 추진되었으며, 최근 국민안전을 위한 핵심기술로 국가적 관심이 증가하고 있다.