"Plus-tic"의 두 판 사이의 차이
env wiki
잔글 (→State of art) |
잔글 (→개발 과제의 목표와 내용) |
||
45번째 줄: | 45번째 줄: | ||
====개발 과제의 목표와 내용==== | ====개발 과제의 목표와 내용==== | ||
*'''플라스틱 압축기 'PLUSTIC'''' | *'''플라스틱 압축기 'PLUSTIC'''' | ||
− | : 플라스틱 압축기 'PLUSTIC'을 이용하여 집 안에서 공간을 많이 차지하는 페트병과 캔 등의 부피를 최소화하여 공간 활용을 도모하며, 쾌적하게 보관할 수 있다. 또한 최소화된 부피로 재활용품을 편리하게 분리수거 할 수 있으며, 재활용품 배출횟수 감소도 기대할 수 있다. 궁극적으로는 생활 속 플라스틱의 재활용률을 높여 자원순환에 동참한다. | + | : - 플라스틱 압축기 'PLUSTIC'을 이용하여 집 안에서 공간을 많이 차지하는 페트병과 캔 등의 부피를 최소화하여 공간 활용을 도모하며, 쾌적하게 보관할 수 있다. 또한 최소화된 부피로 재활용품을 편리하게 분리수거 할 수 있으며, 재활용품 배출횟수 감소도 기대할 수 있다. 궁극적으로는 생활 속 플라스틱의 재활용률을 높여 자원순환에 동참한다. |
*'''빅데이터 구축''' | *'''빅데이터 구축''' | ||
− | : 플라스틱 압축기 'PLUSTIC'은 기존의 압축기에 무게 측정기를 설치함으로서 플라스틱 압축과 함께 무게 데이터를 얻을 수 있다. 이 데이터를 가공하여 빅데이터를 구축함으로서 미래 배출량 예측 AI인 'ALFO-GO'의 기반 데이터로 활용되고 머신러닝의 오차가 줄어들게 한다. | + | : - 플라스틱 압축기 'PLUSTIC'은 기존의 압축기에 무게 측정기를 설치함으로서 플라스틱 압축과 함께 무게 데이터를 얻을 수 있다. 이 데이터를 가공하여 빅데이터를 구축함으로서 미래 배출량 예측 AI인 'ALFO-GO'의 기반 데이터로 활용되고 머신러닝의 오차가 줄어들게 한다. |
*'''인공지능 알고리즘 'ALFO-GO'''' | *'''인공지능 알고리즘 'ALFO-GO'''' | ||
− | : 현재의 단순히 배출된 폐플라스틱의 양을 통계 내 공지하는 형식의 데이터 처리방식에서 벗어나 유효한 데이터를 구축하고 이를 사용자들에게 제공하여 데이터를 기반으로 하는 플라스틱 발생량 줄이기 목표를 달성하고자 한다. 본 과제에서 설계하려는 'ALFO-GO'는 주기적으로 현재 플라스틱 발생량을 입력하고 그 값을 기준으로 미래 플라스틱 배출량을 예측하는 것을 목표한다. | + | : - 현재의 단순히 배출된 폐플라스틱의 양을 통계 내 공지하는 형식의 데이터 처리방식에서 벗어나 유효한 데이터를 구축하고 이를 사용자들에게 제공하여 데이터를 기반으로 하는 플라스틱 발생량 줄이기 목표를 달성하고자 한다. 본 과제에서 설계하려는 'ALFO-GO'는 주기적으로 현재 플라스틱 발생량을 입력하고 그 값을 기준으로 미래 플라스틱 배출량을 예측하는 것을 목표한다. |
*'''웹페이지 구축''' | *'''웹페이지 구축''' | ||
− | : 웹페이지는 크게 'PLUSTIC' 기기 소개와 'ALFO-GO' 기능 구현이라는 두 가지 항목을 구성된다. PLUSTIC 기기 소개란에서는 PLUSTIC 기기를 사용했을 때 얻을 수 있는 장점과 기기 활용법을 소개함에 따라 이용자를 늘린다. 설계한 AI ALFO-GO를 통해 개개인별 플라스틱 배출량을 예측하고 과거부터 미래까지 플라스틱 사용량 그래프를 이용자에게 전달한다. 개개인은 자신의 플라스틱 배출량을 확인함에 따라 소비량을 얼마나 줄여하는지 스스로 관리할 수 있는 시스템을 만드는 것을 목표로 한다. | + | : - 웹페이지는 크게 'PLUSTIC' 기기 소개와 'ALFO-GO' 기능 구현이라는 두 가지 항목을 구성된다. PLUSTIC 기기 소개란에서는 PLUSTIC 기기를 사용했을 때 얻을 수 있는 장점과 기기 활용법을 소개함에 따라 이용자를 늘린다. 설계한 AI ALFO-GO를 통해 개개인별 플라스틱 배출량을 예측하고 과거부터 미래까지 플라스틱 사용량 그래프를 이용자에게 전달한다. 개개인은 자신의 플라스틱 배출량을 확인함에 따라 소비량을 얼마나 줄여하는지 스스로 관리할 수 있는 시스템을 만드는 것을 목표로 한다. |
===관련 기술의 현황=== | ===관련 기술의 현황=== |
2019년 11월 26일 (화) 21:12 판
프로젝트 개요
기술개발 과제
국문 : 플라스틱 압축기 'PLUSTIC' 및 플라스틱 발생량 예측 AI 'ALFO-GO' 설계
영문 : 00000000..
과제 팀명
PLUSTIC조
지도교수
장서일 교수님
개발기간
2019년 9월 ~ 2019년 12월 (총 4개월)
구성원 소개
서울시립대학교 환경공학부 20158900** 성*진(팀장)
서울시립대학교 환경공학부 20168900** 장*정
서울시립대학교 환경공학부 20168900** 정*경
서울시립대학교 환경공학부 20168900** 최*나
서론
개발 과제의 개요
개발 과제 요약
내용
개발 과제의 배경 및 효과
- 환경적 측면
- - 한국해양수산개발원에 따르면 현재까지 전 세계에서 생산된 플라스틱의 총량은 83억 톤에 육박하며 이중 75%인 약 63억 톤이 쓰레기로 배출됐다. 그러나 폐기된 쓰레기 중 9%만 재활용 되었으며, 12%는 소각되고 나머지 79%는 매립되거나 자연에 버려져있다. 소각이나 매립을 하려해도 여의치 않은 것이 현 실태이다. 소각의 경우, 다이옥신배출기준 적용에 따라 소각장의 수가 2016년도 419개소에서 2017년 395개소로 해마다 줄어들고 있다. 또한 매립의 경우, 현재와 같은 상황이 지속되면 국내 매립지 잔존수명이 30년도 채 남지 않은 상황이다.
- - 유럽 플라스틱 및 고무 기계 협회(European Plastics and Rubber Machinery Association)는 2015년 기준으로 우리나라 1인당 플라스틱 소비량이 일본 65.8kg/인, 유럽 67.4kg/인, 미국 93.8kg/인 보다 많은 132.7kg/인이며, 2020년에는 145.9kg/인으로 증가할 것이라 추정하고 있다.
- - 폐플라스틱은 적게는 6개월부터 길게는 500년 이상의 분해기간을 필요로 한다. 이렇게 분해되는 동안 플라스틱은 각종 유해물질을 배출하기도 하고, 생물들이 먹이로 오인해 섭취해 질식사를 일으키고, 폐어망이나 봉지에 걸려 이동이 방해되면서 죽음에도 이르는 생태계 문제를 초래한다.
- 정책적 측면
- - 우리나라의 경우, 2017년 재활용 쓰레기 최대 수입국인 중국이 수입을 중단하면서 그에 따른 대책을 수립하지 못하여 2018년 4월 재활용 수거 대란이 일어났다. 우리나라의 2018년 1~8월 폐플라스틱 수입량이 전년 동기 대비 211% 증가한 반면, 수출액은 57%가 줄었다. 전 세계적인 환경규제로 폐플라스틱 수출이 어려워지는 것이 확실해진 만큼, 정부 차원의 대책도 마련되어야 한다.
- - 환경부는 자원순환사회를 만들기 위해 2018년 1월 1일부터 자원순환기본법을 시행했다. 이는 생산부터 폐기에 이르는 전 과정에서 발생하는 억제하고, 재활용을 촉진하기 위한 내용들이며, 또한 2030년까지는 플라스틱 폐기물 발생량을 절반으로 줄이기 위해 각 순환단계별 종합 개선대책을 마련하였다.
- 인식적 측면
- - 일반적으로 국민소득이 증가할수록 재활용품은 질적 변화를 수반한다. 우리나라는 경제성장에 따른 국민 생활수준의 향상으로 대량생산과 대량소비 활동이 이루어짐으로써 각종 재활용품이 급증하고 있는 상황이다. 더구나 공업화, 산업화에 따른 도시의 인구집중 현상을 도시폐기물의 배출량을 급증시키는 주요 원인이다.
- - 2018년 발생한 폐플라스틱 수거 대란 이후 재활용 쓰레기에 대한 사람들의 경각심이 증가한 것을 알 수 있다. 그럼에도 올바른 분리수거를 준수하지 않은 쓰레기는 여전히 많은 편이며, 올바른 분리배출 방법을 모르는 사람들이 많다.
개발 과제의 목표와 내용
- 플라스틱 압축기 'PLUSTIC'
- - 플라스틱 압축기 'PLUSTIC'을 이용하여 집 안에서 공간을 많이 차지하는 페트병과 캔 등의 부피를 최소화하여 공간 활용을 도모하며, 쾌적하게 보관할 수 있다. 또한 최소화된 부피로 재활용품을 편리하게 분리수거 할 수 있으며, 재활용품 배출횟수 감소도 기대할 수 있다. 궁극적으로는 생활 속 플라스틱의 재활용률을 높여 자원순환에 동참한다.
- 빅데이터 구축
- - 플라스틱 압축기 'PLUSTIC'은 기존의 압축기에 무게 측정기를 설치함으로서 플라스틱 압축과 함께 무게 데이터를 얻을 수 있다. 이 데이터를 가공하여 빅데이터를 구축함으로서 미래 배출량 예측 AI인 'ALFO-GO'의 기반 데이터로 활용되고 머신러닝의 오차가 줄어들게 한다.
- 인공지능 알고리즘 'ALFO-GO'
- - 현재의 단순히 배출된 폐플라스틱의 양을 통계 내 공지하는 형식의 데이터 처리방식에서 벗어나 유효한 데이터를 구축하고 이를 사용자들에게 제공하여 데이터를 기반으로 하는 플라스틱 발생량 줄이기 목표를 달성하고자 한다. 본 과제에서 설계하려는 'ALFO-GO'는 주기적으로 현재 플라스틱 발생량을 입력하고 그 값을 기준으로 미래 플라스틱 배출량을 예측하는 것을 목표한다.
- 웹페이지 구축
- - 웹페이지는 크게 'PLUSTIC' 기기 소개와 'ALFO-GO' 기능 구현이라는 두 가지 항목을 구성된다. PLUSTIC 기기 소개란에서는 PLUSTIC 기기를 사용했을 때 얻을 수 있는 장점과 기기 활용법을 소개함에 따라 이용자를 늘린다. 설계한 AI ALFO-GO를 통해 개개인별 플라스틱 배출량을 예측하고 과거부터 미래까지 플라스틱 사용량 그래프를 이용자에게 전달한다. 개개인은 자신의 플라스틱 배출량을 확인함에 따라 소비량을 얼마나 줄여하는지 스스로 관리할 수 있는 시스템을 만드는 것을 목표로 한다.
관련 기술의 현황
State of art
- 빅데이터
- 빅데이터는 기존 데이터베이스로 처리할 수 있는 역량을 넘어서는 초대용량의 정형, 비정형 데이터를 생성, 수집, 저장 관리 및 분석하여 가치를 추출하고 지능화 서비스의 기반을 지원하는 기술이다. 특히 그 범위가 확대되어 도구, 플랫폼, 분석 기법 등도 포함한다. 미래 산업에서 경쟁 우위를 좌우하는 중요한 자원으로 활용될 수 있으며 빅데이터의 분석의 목적을 적절히 설정하여 유연한 의사결정을 하기도 한다. 또한 이를 분석해 의미 있는 정보를 찾아내기 위해 한 방법으로 머신러닝을 이용하기도 한다.
- 머신러닝
- 인공지능의 한 분야인 머신러닝은 컴퓨터에게 데이터를 학습시킴으로서 컴퓨터 스스로 판단하고 새로운 분석을 얻어내는 분야이다. IoT가 활성화하면서 발생하는 빅데이터들을 최적화하여 머신러닝의 효율을 극대화시킬 수 있다. 이러한 머신러닝을 이용해 데이터 기반으로 예측하고, 분석모델 빌딩 프로세스를 효과적으로 자동화하고 시스템이 독립적으로 새로운 시나리오에 적응할 수 있도록 하여 인공지능을 구현할 수 있다. 구현한 인공지능으로는 미래예측, 이미지 인식, 음성인식, 번역 등 여러 가지에 활용할 수 있다. 실례로 데이터 불균형 환경에서 머신러닝을 접목해 원인을 도출하고 시각화가 필요한 여러 분야에서 이용하고 있다.
기술 로드맵
내용
특허조사
내용
특허전략
내용
관련 시장에 대한 분석
경쟁제품 조사 비교
내용
마케팅 전략
내용
개발과제의 기대효과
기술적 기대효과
내용
경제적 및 사회적 파급효과
내용
구성원 및 추진체계
내용
설계
설계사양
내용
개념설계안
내용
이론적 계산 및 시뮬레이션
내용
조립도
조립도
내용
조립순서
내용
부품도
내용
제어부 및 회로설계
내용
소프트웨어 설계
내용
자재소요서
내용
결과 및 평가
완료작품 소개
프로토타입 사진
내용
포스터
내용
특허출원번호 통지서
내용
개발사업비 내역서
내용
완료 작품의 평가
내용
향후평가
내용
부록
참고문헌 및 참고사이트
내용
관련특허
내용
소프트웨어 프로그램 소스
내용