Vision

cdc wiki
Com237 (토론 | 기여)님의 2023년 6월 23일 (금) 23:52 판 (구성원 및 추진체계)
이동: 둘러보기, 검색

프로젝트 개요=

기술개발 과제

국문 : 코테고리 서비스 - 알고리즘 유형분류 퀴즈 및 문제 추천 서비스

영문 : Cotegory Service - Algorithm type classification quiz and problem recommendation sevice

과제 팀명

Vision

지도교수

황*수 교수님

개발기간

2023년 3월 ~ 2023년 6월 (총 4개월)

구성원 소개

서울시립대학교 컴퓨터과학부 20189200** 류*욱(팀장)

서울시립대학교 컴퓨터과학부 20179200** 김*

서울시립대학교 컴퓨터과학부 20184300** 김*철

서울시립대학교 컴퓨터과학부 20189200** 임*욱

서울시립대학교 컴퓨터과학부 20189200** 한*한

서론

개발 과제의 개요

개발 과제 요약

◇ 사용자 수준에 맞춘 알고리즘 문제 유형 분류 퀴즈 제공
◇ 오답률이 높은 문제 유형의 알고리즘 분야 파악 및 문제 추천 기능 제공
◇ 퀴즈 결과를 기반으로 한 프로필 요약 제공
◇ 취업 및 자기계발이 서비스의 주 목적으로 취준생이 주요 타겟층

개발 과제의 배경

◇ IT 분야의 기업에 취업을 희망하는 경우, 다수의 기업이 알고리즘 코딩테스트를 기업의 전형에 포함하고있어, 알고리즘 학습에 대한 수요가 많은 상황이다.
◇ 알고리즘 문제를 읽고 접근방식에 대한 충분한 검토 없이 바로 풀이에 들어가는 사용자가 있다.

개발 과제의 목표 및 내용

◇ 알고리즘 대회 또는 코딩테스트를 준비하는 사용자가 쉽게 자신의 알고리즘 역량을 확인하고, 향상시킬 수 있는 웹 플랫폼을 개발한다.
◇ 퀴즈 결과를 통해 요약 프로필을 제공하고 이를 통해 자신의 알고리즘 풀이 능력을 한 눈에 확인할 수 있게 한다.
◇ 퀴즈 결과를 통해 취약한 알고리즘 유형의 문제를 추천하여 자연스럽게 구현까지 이어지게 한다.
◇ 사용자가 서비스를 활용할 수록 알고리즘 풀이에 흥미를 갖게하여 꾸준하게 Cotegory 서비스를 이용할 수 있도록 한다.

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황

내용

  • 특허조사 및 특허 전략 분석
◇ (주)뤼이드. 인공 지능 학습 기반의 학습 컨텐츠 추천 시스템 및 그것의 동작 방법. 10-2021-0014455. 2021년 2월 2일, 2022년 4월 29일
◇ (주)뤼이드. 온라인 학습에서 적응형 사용자 인터페이스를 제공하는 방법 및 장치. 10-2020-0024119. 2020년 2월 27일, 2021년 2월 2일
◇ (주)뤼이드. 교육 컨텐츠를 제공하는 방법, 장치 및 컴퓨터 프로그램. 10-2019-0024272. 2019년 2월 28일, 2021년 2월 2일
  • 기술 로드맵

Image00001.png



기술 로드맵 구성


진행 순서 (월단위)


3


4


5


6


프로젝트 구상 및 구체화










DB 설계










UI 설계










추천 모델 데이터 수집 및 학습










AI 서버 제작










API 서버 제작










웹 제작










설문 조사










릴리즈 버전 테스트








시장상황에 대한 분석

  • 경쟁제품 조사 비교
◇ Baekjoon
  • 대표적인 알고리즘 문제 해결 서비스
  • 알고리즘 문제를 코드를 작성하여 직접 해결 할 수 있으나 알고리즘 문제에 대한 카테고리를 맞추는 문제는 제공하지 않음.
  • 사용자에게 문제를 추천해주는 서비스는 제공해주지 않음.
◇ Programmers (스킬체크)
  • 사용자가 스스로 생각하는 레벨별로 알고리즘 문제를 제공 후 평가해주는 서비스
  • 사용자의 코드의 정확성과 효율성을 판단할 수 있음
◇ Solved.ac (프로필 제공 측면)
  • Baekjoon 사이트의 기록을 기반으로 문제와 사용자의 프로필을 제공해주는 서비스
  • 사용자의 수준과 문제의 난이도를 파악할 수 있음.
  • 직접적인 문제를 풀 수 있는 서비스르 제공해주지는 않음.
◇ 산타 토익
  • 사용자가 푼 문제 결과를 기반으로 토익 문제를 추천해주는 영어 공부 서비스
  • 첫 12문제의 결과 값을 이용하여 사용자에게 적합한 문제를 추천해준다.
  • 토익 시험 응시생을 대상으로 한다.
서비스 타겟 추천 서비스 문제 제공 서비스 프로필 제공
백준 알고리즘을 해결하고자 하는 사용자 존재하지 않음. 알고리즘 문제 제공 간단한 정보 제공
solved.ac 백준을 사용하는 사용자 존재하지 않음. 제공하지 않음 사용자 맞춤형 정보 제공
programmers 알고리즘을 해결하고자 하는 사용자 존재하지 않음. 알고리즘 문제 제공 간단한 정보 제공
산타 토익 토익을 준비하는 사용자 사용자의 수준에 맞는 문제 추천 토익 문제 제공 사용자 맞춤형 정보 제공
코테고리 취업을 준비하는 사용자 사용자의 수준에 맞는 문제 추천 알고리즘 카테고리 문제 제공 사용자 맞춤형 정보 제공
  • 마케팅 전략 제시
◇ 코딩테스트 준비를 시작하려는 취업 준비생들에게 본인의 알고리즘 역량을 쉽게 파악할 수 있는 점 을 강조한다.
◇ 기존 서비스에는 존재 하지 않던 "카테고리"를 맞추는 문제를 제공해 준다는 점을 강조한다.
◇ 사용자가 어려워하는 유형의 문제를 추천하여 문제 해결에 대한 취약점 개선 가능성을 강조한다.
◇ 사용자에게 설문조사를 실시한다.

개발과제의 기대효과

기술적 기대효과

◇ 알고리즘 유형 분석 능력 증진
◇ 취약한 분야의 알고리즘 문제를 추천받을 수 있다
◇ 기업 코딩테스트 대비

경제적, 사회적 기대 및 파급효과

◇ 알고리즘 접근 난이도 하향
◇ 알고리즘 풀이에 대한 흥미 유발
◇ 교육 자료로 활용

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

◇ Front-end (류병욱)

 UI/UX
 프론트 페이지 HTML 작성
 Back-end와의 통신코드 작성

◇ Back-end (김준)

 mmr시스템 로직 구현
 mmr시스템을 통한 Quiz 추천
 기업문제 추천

◇ Back-end (김형철)

 크롤링 로직 구현
 JWT 로그인 구현
 어드민 페이지 API 개발
 비정상적 문제 검열 로직

◇ Back-end (김준, 김형철 공통)

 서비스 로직 API 개발

◇ AI (한수한)

 모델 학습
 평가 & 비교(EASE, AUTO_ENCODER)

◇ 아마존 배포 (임재욱)

 main 머지 시 자동 배포 (CI/CD)

설계

설계사양

제품의 요구사항

내용

설계 사양

내용

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용