"Battery Flow"의 두 판 사이의 차이

2019 CE
이동: 둘러보기, 검색
(프로젝트 개요)
(서론)
30번째 줄: 30번째 줄:
 
===개발 과제의 개요===
 
===개발 과제의 개요===
 
====개발 과제 요약====
 
====개발 과제 요약====
내용
+
◇ ESS(Energy Storage System)의 종류는 크게 에너지 저장 기술에 따라 화학적 저장, 전자기적 저장, 열역학적 저정, 물리적 저장으로 나뉜다. 이번에는 화학적 저장 중 플로우 배터리인 VRFB(Vanadium Redox Flow Battery)에 대해 연구한다.
 +
◇ VRFB(Vanadium Redox Flow Battery)는 LIB(Lithium Ion Battery)와 비교했을 시, 안전성이 좋고 약 30년으로 긴 수명이 가지고, 낮은 에너지 밀도로 인해 ESS에 적용하기에는 어려움이 있다.
 +
◇ VRFB 탱크에 RT(Redox Target)물질을 넣어 활성물질인 바나듐과 산화환원 반응을 통해 전자를 RT물질에 저장 또는 방출하면서 에너지 저장 밀도를 높여줄 수 있다. 
 +
◇ 이번 연구에서는 VRFB 환경에서 사용 가능한 새로운 RT물질을 찾고자 한다.
 +
◇ 새로운 RT물질이 VRFB에 적용 가능한 여부는 1. RT물질이 배터리 재료의 Femi level과 비슷한 값의 표준 전위를 갖는 가역적 환원 종이여야 하고, 2. RT물질의 산화환원 전위 중 하나가 활성물질보다 낮고, 다른 하나는 활성물질보다 높아야 한다.
 +
 
 
====개발 과제의 배경====
 
====개발 과제의 배경====
내용
+
◇ 최근 지구온난화로 인해 각국에서는 신재생에너지의 비중을 높이고 있는 추세이다. 하지만 신재생에너지는 시간, 날씨와 같은 주변 환경의 영향을 크게 받으며 이로 인해 출력량을 예측하기 어렵다(재생에너지의 간헐성).
 +
◇ 신재생에너지의 단점들을 보완하기 위해 에너지 저장 기술인 ESS가 도입되었다. ESS는 예비전력 저장을 통한 피크시간대에 전력망의 부담을 줄여주고, 환경에 따라 변동성이 큰 발전량을 보완할 수 있으며 ,마지막으로 전력공급 불안정 시 주파수를 안정시킬 수 있다.
 +
◇ 이러한 ESS의 장점으로 인해 각국에서는 ESS 시장 규모가 급증하고 있다. 이를 통해 ESS는 국내외적으로 성장 가능성이 크고 ESS에 대한 연구의 필요성이 지속적으로 높아질 분야라고 생각하였다.
 +
◇ VRFB는 수계 전해질을 사용함으로써 화재 위험성이 없다. 또, 약 30년이라는 긴 사이클 수명을 가지고 있고 전해질의 부피를 늘려 에너지 저장 용량을 향상시키고 전극의 크기를 늘려 출력 전력을 높임으로써 LIB에 비해 용량 확장과 설계에 유연하다. 이러한 장점으로 인해 VRFB는 현재 ESS 시장에서 주목 받고 있다.
 +
◇ 이러한 장점들에도 불구하고 현재 VRFB는 에너지 밀도가 낮다라는 단점이 있다. 이를 극복하기 위해 탱크에 RT물질을 넣어 활성물질인 바나듐과 서로 반응하여 전자를 RT물질에 저장 또는 방출하면서 에너지 저장밀도를 높여준다.
 +
◇ 따라서, 이번 연구에서는 VRFB에 적용가능한 새로운 RT물질을 찾는 것이 목표이다.
 +
 
 
====개발 과제의 목표 및 내용====
 
====개발 과제의 목표 및 내용====
내용
+
◇ VRFB의 에너지 저장밀도를 높여주는 새로운 RT물질을 찾는다.
 +
◇ 논문 리뷰 결과 이번 연구에 RT물질로 사용가능하다고 판단한 물질은 5가지이며, 경제성, 합성 용이성 등을 근거로 5개 중 2개인 PANI-FeCoPBA, K-V-Fe-PBA를 합성한다.
 +
◇ 합성된 물질이 실제 VRFB에서 RT물질로 적용가능한지 CV를 통해 확인한다.
 +
◇ 이때, 고체 시료만의 전기화학적 성질을 확인하는 RDE(Rotating Disk Electrode)를 사용하여 활성물질과 RT물질의 CV 데이터를 얻는다.
  
 
===관련 기술의 현황===
 
===관련 기술의 현황===
40번째 줄: 54번째 줄:
 
*전 세계적인 기술현황
 
*전 세계적인 기술현황
 
내용
 
내용
*특허조사 및 특허 전략 분석
+
*특허조사
내용
+
◇ Stable and High-capacity Neutral Aqueous Redox Flow Lithium Battery Based on a Redox-Targeting Reaction
*기술 로드맵
+
본 발명은 Redox-targeting 반응을 이용한 안정적이고 고용량의 중성 수계 redox flow 리튬 배터리에 관한 것이다. 해당 flow 리튬 배터리는 양극 전해질액 탱크와 음극 전해질액 탱크로 구성되어 있다. 양극 전해질 탱크에는 [Fe(CN)6]4− 또는 [Fe(CN)6]3− 염이 포함된 양극 전해질과 함께, 탱크 내부에 추가적으로 LFP(Lithium Iron Phosphate) 혹은 FP입자가 포함된다. 이 flow 리튬 배터리는 대용량 에너지 저장 분야에서 다양한 활용이 가능할 것으로 기대된다.
내용
+
◇ A condensed phase aqueous redox flow battery
 
+
본 발명은 음극 전해질 탱크와 양극 전해질 탱크로 구성된 응축 상 redox flow 전지(CARB, Condensed phase redox flow battery)를 골자로 한다. 전해질 탱크에는 전기적으로 활성화된 고체물질이 포함되어 있는데, 이때 이 물질들은 PB(Prussian blue), PBA, PB 수화물, 또는 기타 다른 물질이다. - CARB를 통해 기존의 Flow battery의 한계점인 낮은 전지 성능, cycling 안정성을 극복하고 실제 산업에 이용될 수 있는 전지를 생산할 수 있다.
====시장상황에 대한 분석====
+
◇ Cobalt ferricyanide solid energy storage material applied to flow battery and preparation method thereof
*경쟁제품 조사 비교
+
본 발명은 흐름 전지에 cobalt iron cyanide(CoFe-PBA)를 고체 에너지저장 물질로 사용하는 방법과, 해당 물질의 제작법을 골자로 한다. TEMPO는 기존 Flow 전지의 수계 전해질 활성물질에 비해 산화환원 가역성이 높고 친환경적이라는 장점이 있다. 하지만 산화환원 potential이 높아 RT반응을 이용하여 전지의 에너지밀도를 높일 수 없다는 단점이 있다. 이에 따라 본 발명은 TEMPO와 Redox potential이 일치하는 물질인 cobalt iron cyanide의 합성 방법을 제시하고, 해당 물질이 고체 에너지저장물질로 사용 가능함을 확인하였다.
내용
+
◇ Flow batteries with insoluble polymer supported redox active materials
*마케팅 전략 제시
+
본 발명은 불용해성인, 작용기를 부착한 고분자 bead를 전해질 탱크 내부에 포함하여 bead의 산화-환원반응에 활성화된 부분에 전자를 저장하는 redox matched flow battery의 구성과, 해당 Bead의 합성 방법에 관한 것이다. 해당 활성 Bead는 resin bead xPS-Cl에 -viologen group, ferrocene 혹은 cyclopropenium기를 부착하여 만들어진다. 이 bead를 flow 전지에 포함해 기존 Flow 전지에 비해 성능이 향상된 RMFB를 제작할 수 있다.
내용
+
*특허전략
 +
◇ 다양한 수계 배터리에 사용된 여러 RT물질을 확인할 수 있었다. 주로 PBA계 금속화합물이 사용되었지만, LFP 또는 고분자계 물질 역시 사용되었다. 하지만 VRFB를 대상으로 한 RT물질의 특허는 1개만 찾아볼 수 있었고, 그 역시 구체적으로 RT물질 및 그 합성법을 제시한 것이 아닌 RT라는 기법에 대한 개념 및 여러 가지 가능한 물질을 포괄적으로 제시한 개념적 특허로 보인다. 따라서 특정 RT물질을 제시하고, 그에 대한 성능향상폭을 구체적으로 제시한다면 특허를 취득할 수 있을 것으로 보인다.
 +
◇ Cobalt가 사용된 PBA가 특허가 존재하긴 하였지만, 우리가 사용한 물질의 경우 Co-Fe-PBA의 경우 PANI를 코팅하여 성능향상을 시도하였고, K-V-Fe PBA의 경우 기존 특허가 없기 때문에 해당 두 물질을 사용하여 특허의 신규성을 확보할 수 있다.
 +
◇ 우리가 선정한 RT물질들에 대하여, 구체적인 합성방법을 제시하여 합성의 용이함을 제시한다. 그에 더하여, 새로운 RT물질을 적용한 전지가 기존 VRFB에 비하여 어떤 점에서 성능이 향상되는지 구체적으로 근거를 제시하여 진보성을 확보할 수 있다.
 +
◇ 그에 더하여, 실제 ESS산업에 이용될 수 있도록 대량 합성방법을 고안하고, 해당 물질이 기존 PBA에 비하여 비용적 이점이 있는지 기반 원소 가격, 합성 재료 가격 등을 이용하여 제시한다면 산업적 이용 가능성을 확보할 수 있다.
  
 
===개발과제의 기대효과===
 
===개발과제의 기대효과===

2023년 12월 18일 (월) 23:47 판

프로젝트 개요

기술개발 과제

국문 : Redox-Target Redox Flow Battery 에 대한 설계 및 성능 향상

영문 : Design and Performance Enhancement of Redox-Target Redox Flow Battery

과제 팀명

Battery Flow

지도교수

이두환 교수님

개발기간

2023년 9월 ~ 2023년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 2017340044 조재호(팀장)

서울시립대학교 화학공학과 2020340054 이승기

서울시립대학교 화학공학과 2018890046 심형석

서울시립대학교 화학공학과 2018890047 안유현

서울시립대학교 화학공학과 2019340013 김주향

서론

개발 과제의 개요

개발 과제 요약

◇ ESS(Energy Storage System)의 종류는 크게 에너지 저장 기술에 따라 화학적 저장, 전자기적 저장, 열역학적 저정, 물리적 저장으로 나뉜다. 이번에는 화학적 저장 중 플로우 배터리인 VRFB(Vanadium Redox Flow Battery)에 대해 연구한다.
◇ VRFB(Vanadium Redox Flow Battery)는 LIB(Lithium Ion Battery)와 비교했을 시, 안전성이 좋고 약 30년으로 긴 수명이 가지고, 낮은 에너지 밀도로 인해 ESS에 적용하기에는 어려움이 있다.
◇ VRFB 탱크에 RT(Redox Target)물질을 넣어 활성물질인 바나듐과 산화환원 반응을 통해 전자를 RT물질에 저장 또는 방출하면서 에너지 저장 밀도를 높여줄 수 있다.  
◇ 이번 연구에서는 VRFB 환경에서 사용 가능한 새로운 RT물질을 찾고자 한다.
◇ 새로운 RT물질이 VRFB에 적용 가능한 여부는 1. RT물질이 배터리 재료의 Femi level과 비슷한 값의 표준 전위를 갖는 가역적 환원 종이여야 하고, 2. RT물질의 산화환원 전위 중 하나가 활성물질보다 낮고, 다른 하나는 활성물질보다 높아야 한다.

개발 과제의 배경

◇ 최근 지구온난화로 인해 각국에서는 신재생에너지의 비중을 높이고 있는 추세이다. 하지만 신재생에너지는 시간, 날씨와 같은 주변 환경의 영향을 크게 받으며 이로 인해 출력량을 예측하기 어렵다(재생에너지의 간헐성).
◇ 신재생에너지의 단점들을 보완하기 위해 에너지 저장 기술인 ESS가 도입되었다. ESS는 예비전력 저장을 통한 피크시간대에 전력망의 부담을 줄여주고, 환경에 따라 변동성이 큰 발전량을 보완할 수 있으며 ,마지막으로 전력공급 불안정 시 주파수를 안정시킬 수 있다.
◇ 이러한 ESS의 장점으로 인해 각국에서는 ESS 시장 규모가 급증하고 있다. 이를 통해 ESS는 국내외적으로 성장 가능성이 크고 ESS에 대한 연구의 필요성이 지속적으로 높아질 분야라고 생각하였다.
◇ VRFB는 수계 전해질을 사용함으로써 화재 위험성이 없다. 또, 약 30년이라는 긴 사이클 수명을 가지고 있고 전해질의 부피를 늘려 에너지 저장 용량을 향상시키고 전극의 크기를 늘려 출력 전력을 높임으로써 LIB에 비해 용량 확장과 설계에 유연하다. 이러한 장점으로 인해 VRFB는 현재 ESS 시장에서 주목 받고 있다. 
◇ 이러한 장점들에도 불구하고 현재 VRFB는 에너지 밀도가 낮다라는 단점이 있다. 이를 극복하기 위해 탱크에 RT물질을 넣어 활성물질인 바나듐과 서로 반응하여 전자를 RT물질에 저장 또는 방출하면서 에너지 저장밀도를 높여준다.
◇ 따라서, 이번 연구에서는 VRFB에 적용가능한 새로운 RT물질을 찾는 것이 목표이다. 

개발 과제의 목표 및 내용

◇ VRFB의 에너지 저장밀도를 높여주는 새로운 RT물질을 찾는다.
◇ 논문 리뷰 결과 이번 연구에 RT물질로 사용가능하다고 판단한 물질은 5가지이며, 경제성, 합성 용이성 등을 근거로 5개 중 2개인 PANI-FeCoPBA, K-V-Fe-PBA를 합성한다.
◇ 합성된 물질이 실제 VRFB에서 RT물질로 적용가능한지 CV를 통해 확인한다. 
◇ 이때, 고체 시료만의 전기화학적 성질을 확인하는 RDE(Rotating Disk Electrode)를 사용하여 활성물질과 RT물질의 CV 데이터를 얻는다. 

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황

내용

  • 특허조사
◇ Stable and High-capacity Neutral Aqueous Redox Flow Lithium Battery Based on a Redox-Targeting Reaction

본 발명은 Redox-targeting 반응을 이용한 안정적이고 고용량의 중성 수계 redox flow 리튬 배터리에 관한 것이다. 해당 flow 리튬 배터리는 양극 전해질액 탱크와 음극 전해질액 탱크로 구성되어 있다. 양극 전해질 탱크에는 [Fe(CN)6]4− 또는 [Fe(CN)6]3− 염이 포함된 양극 전해질과 함께, 탱크 내부에 추가적으로 LFP(Lithium Iron Phosphate) 혹은 FP입자가 포함된다. 이 flow 리튬 배터리는 대용량 에너지 저장 분야에서 다양한 활용이 가능할 것으로 기대된다.

◇ A condensed phase aqueous redox flow battery

본 발명은 음극 전해질 탱크와 양극 전해질 탱크로 구성된 응축 상 redox flow 전지(CARB, Condensed phase redox flow battery)를 골자로 한다. 전해질 탱크에는 전기적으로 활성화된 고체물질이 포함되어 있는데, 이때 이 물질들은 PB(Prussian blue), PBA, PB 수화물, 또는 기타 다른 물질이다. - CARB를 통해 기존의 Flow battery의 한계점인 낮은 전지 성능, cycling 안정성을 극복하고 실제 산업에 이용될 수 있는 전지를 생산할 수 있다.

◇ Cobalt ferricyanide solid energy storage material applied to flow battery and preparation method thereof

본 발명은 흐름 전지에 cobalt iron cyanide(CoFe-PBA)를 고체 에너지저장 물질로 사용하는 방법과, 해당 물질의 제작법을 골자로 한다. TEMPO는 기존 Flow 전지의 수계 전해질 활성물질에 비해 산화환원 가역성이 높고 친환경적이라는 장점이 있다. 하지만 산화환원 potential이 높아 RT반응을 이용하여 전지의 에너지밀도를 높일 수 없다는 단점이 있다. 이에 따라 본 발명은 TEMPO와 Redox potential이 일치하는 물질인 cobalt iron cyanide의 합성 방법을 제시하고, 해당 물질이 고체 에너지저장물질로 사용 가능함을 확인하였다.

◇ Flow batteries with insoluble polymer supported redox active materials

본 발명은 불용해성인, 작용기를 부착한 고분자 bead를 전해질 탱크 내부에 포함하여 bead의 산화-환원반응에 활성화된 부분에 전자를 저장하는 redox matched flow battery의 구성과, 해당 Bead의 합성 방법에 관한 것이다. 해당 활성 Bead는 resin bead xPS-Cl에 -viologen group, ferrocene 혹은 cyclopropenium기를 부착하여 만들어진다. 이 bead를 flow 전지에 포함해 기존 Flow 전지에 비해 성능이 향상된 RMFB를 제작할 수 있다.

  • 특허전략
◇ 다양한 수계 배터리에 사용된 여러 RT물질을 확인할 수 있었다. 주로 PBA계 금속화합물이 사용되었지만, LFP 또는 고분자계 물질 역시 사용되었다. 하지만 VRFB를 대상으로 한 RT물질의 특허는 1개만 찾아볼 수 있었고, 그 역시 구체적으로 RT물질 및 그 합성법을 제시한 것이 아닌 RT라는 기법에 대한 개념 및 여러 가지 가능한 물질을 포괄적으로 제시한 개념적 특허로 보인다. 따라서 특정 RT물질을 제시하고, 그에 대한 성능향상폭을 구체적으로 제시한다면 특허를 취득할 수 있을 것으로 보인다.
◇ Cobalt가 사용된 PBA가 특허가 존재하긴 하였지만, 우리가 사용한 물질의 경우 Co-Fe-PBA의 경우 PANI를 코팅하여 성능향상을 시도하였고, K-V-Fe PBA의 경우 기존 특허가 없기 때문에 해당 두 물질을 사용하여 특허의 신규성을 확보할 수 있다.
◇ 우리가 선정한 RT물질들에 대하여, 구체적인 합성방법을 제시하여 합성의 용이함을 제시한다. 그에 더하여, 새로운 RT물질을 적용한 전지가 기존 VRFB에 비하여 어떤 점에서 성능이 향상되는지 구체적으로 근거를 제시하여 진보성을 확보할 수 있다.
◇ 그에 더하여, 실제 ESS산업에 이용될 수 있도록 대량 합성방법을 고안하고, 해당 물질이 기존 PBA에 비하여 비용적 이점이 있는지 기반 원소 가격, 합성 재료 가격 등을 이용하여 제시한다면 산업적 이용 가능성을 확보할 수 있다.

개발과제의 기대효과

기술적 기대효과

내용

경제적, 사회적 기대 및 파급효과

내용

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

내용

설계

설계사양

제품의 요구사항

내용

설계 사양

내용

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용