LMB

2019 CE
21che14 (토론 | 기여)님의 2021년 12월 13일 (월) 05:54 판 (최종 목표)
이동: 둘러보기, 검색

프로젝트 개요

기술개발 과제

국문 : 리튬메탈베터리의 안정화를 위한 덴드라이트의 효과적인 억제 방안

영문 : Effective Method to Inhibit Dendrite Growth for Stable Lithium Metal Battery

과제 팀명

LMB

지도교수

정철수 교수님

개발기간

2021년 9월 ~ 2021년 12월 (총 4개월)

구성원 소개

서울시립대학교 화학공학과 2018340011 김예랑(팀장)

서울시립대학교 화학공학과 2018340020 박지혜

서울시립대학교 화학공학과 2018340041 정유진

서울시립대학교 화학공학과 2018340051 황유진

서론

개발 과제의 개요

개발 과제 요약

  • 리튬메탈배터리(Lithium metal battery, LMB)는 리튬이온배터리(Lithium ion battery, LIB)보다 10배 이상 높은 용량, 높은 에너지 밀도를 가짐에도 불구하고 덴드라이트의 생성으로 사용되지 못하고 있다.
  • Li 덴드라이트가 성장하면 부반응으로 인해 배터리의 쿨롱 효율이 낮아질 뿐만 아니라, 배터리의 단락화 등을 유발하여 배터리의 고장을 초래하는 문제를 일으킨다.
  • 기존 사례에 의하면 전해질 디자인, 전극의 시드(seed) 디자인, 보호막의 소재 선택과 같은 다양한 방법을 통해 덴드라이트 생성 속도를 조절하고 LMB를 안정화시킬 수 있다.
  • 따라서 덴드라이트 억제를 통한 LMB 상용화를 목표로 한 연구 방향에 대해 조사해보고자 한다.

개발 과제의 배경

  • Li 금속을 anode로 사용하는 배터리를 리튬메탈배터리라고 한다. 리튬이온배터리의 anode는 흑연을 사용하는데, 이 흑연물질의 이론용량은 약 372 mAh/g이고 LMB의 이론용량은 약 3,860 mAh/g으로 흑연보다 10배 이상 높은 용량을 가진다. 에너지 밀도는 LIB는 800 Wh/L, LMB는 1000 Wh/L 이상이다.[1]
  • 최근 미국의 LMB 개발업체인 솔리드에너지시스템(SES)은 현재 개발 중인 LMB를 2025년에 상용화할 계획이라고 밝혔다. 지난 5월 현대차와 기아가 LMB 개발을 위해 제휴개발계약(JDA)를 SES와 체결하면서 LMB 개발에 박차를 가하고 있다.[2]
  • 이렇게 각광받는 LMB의 개발이 늦었던 이유는 Li 금속을 anode로 사용하게 되면서 생기는 Li 덴드라이트(Lithium dendrite) 현상 때문이다. Li 덴드라이트란, Li 표면과 전해질과의 화학 반응으로 인해 생성되는 불안정한 SEI(Solid electrolyte interface)층으로 전자가 유입되어 Li 이온과 결합해 Li 금속이 석출되어 균일한 표면을 이루지 못하고 한 곳에 집중적으로 전착이 심해지는 현상을 말한다.[3]
Fig.1 Growth process of Li dendrite
  • LIB, LMB 모두 전지를 충전할 때 Li 이온이 anode에 도금되는 과정을 거치는데 LMB의 anode인 Li 금속은 기존 LIB의 anode인 흑연보다 훨씬 더 큰 부피 변화를 수반하여 SEI층의 파괴 및 재형성을 유발한다. SEI층이 파괴되면 전자가 유출되어 일어나는 부반응으로 인해 전해질과 활성 물질이 지속적으로 고갈되어 쿨롱 효율과 사이클 수명을 낮추고 배터리의 고장을 초래한다.[4,5] 또한 지속적으로 성장하면서 부피가 커져 불안정해진 덴드라이트가 부서지면 집전체로부터 분리된 “Dead Li”이 형성된다. Dead Li이 발생하면 충전 및 방전 중에 Li 이온이 비가역적으로 전환되어 용량 손실을 일으킨다.[6] 마지막으로 덴드라이트가 길게 성장하면 SEI층 뿐만 아니라 분리막의 파괴까지 초래할 수 있다. 결과적으로 덴드라이트의 끝부분이 LMB의 cathode에 닿아 배터리의 단락을 유발하여 폭발 등의 문제가 발생한다.[7] 이러한 문제로 인해 LMB를 상용화하기 위해서는 덴드라이트의 생성 억제 또는 성장 억제가 매우 중요한 역할을 한다.
  • 따라서 본 과제를 통해 LMB의 원리와 덴드라이트의 생성 및 성장 메커니즘을 조사하여 이해하고, 덴드라이트에 대한 LMB의 영향을 분석하여 이를 억제할 수 있는 방안들의 사례를 모색한다. 또한, 이 방안들과 덴드라이트 억제의 관계성을 파악하여 이해한다.

개발 과제의 목표 및 내용

최종 목표

  • LMB 상용화 및 배터리 효율 개선에 필요한 덴드라이트 억제 관련 연구 조사

세부 목표

  • Anode로써 흑연과 리튬 금속의 차이를 이해하고, 리튬 금속 anode에서 덴드라이트 생성과 성장에 대한 과정과 원리에 대해 분석한다.
  • 전해질 첨가제, 분리막 등의 다양한 조건 변화로 리튬 금속 표면에 생성되는 덴드라이트의 생성 또는 성장을 억제하여 높은 안정성과 높은 쿨롱 효율을 갖기 위한 방안들을 조사한다.
  • 덴드라이트는 리튬 금속 표면에 리튬 이온 농도의 감소로 인해 발생하기 때문에 리튬 금속 계면에서 리튬 이온의 농도를 일정하게 유지시킬 수 있는 방법에 대해 조사한다.
  • 리튬 금속 표면의 덴드라이트는 리튬의 환원 반응으로 인해 불균일하게 성장하여 SEI층 및 분리막을 파괴하여 내부단락을 발생시킨다. 그러므로 덴드라이트 성장을 늦추거나 균일한 덴드라이트 성장을 위한 방향으로 조사를 진행한다.
  1. 전해질 디자인
고농도의 전해질을 사용했을 때 전기화학적 산화, 환원의 안정성이 향상된다는 연구와 더불어 이를 사용한 LIB에서 덴드라이트 형성이 억제된 결과가 보고되고 있다. 또한 전해질에 첨가제가 포함되어 있을 때, 첨가제가 분해되면서 SEI층의 특성을 바꾸고 이는 결과적으로 리튬 금속이 자라는 데에 중요한 영향을 끼친다. 예를 들어, 세슘과 같은 금속이온과 불소가 함유된 첨가제를 사용하는데, LMB의 문제점인 낮은 쿨롱 효율을 높여주는 효과를 가지지만, 세슘 이온은 리튬 이온과 환원전위 차이가 크지 않기 때문에 고속으로 충방전할 때에는 덴드라이트의 성장을 막기 어렵다는 한계가 여전히 존재하고 있다.
  1. 전극의 시드 디자인
덴드라이트 생성의 시작인 시드를 조절하면 덴드라이트의 성장을 막고 균일한 덴드라이트 증착을 유도할 수 있다.[8] 리튬 금속 anode에 특정 금속을 원자 단위로 분산시키면, 그 특정 금속과 리튬이 solid solution을 형성하여 interface energy를 낮추어 균일한 증착을 유도하는 시드 역할을 하게 된다. 이러한 역할을 하는 금속에는 리튬에 비해 표준 환원 전위가 높은 금속들을 사용할 수 있다. 예로, Ga, In, Mg, Zn, Au 등이 있다. 이 금속들이 리튬 금속 anode에 있다면 덴드라이트가 증착하기 이전에 alloy phase를 형성하여 리튬 증착을 분산시킬 수 있다.
  1. 보호막의 소재 선택
리튬 덴드라이트의 성장을 억제하거나, 또는 보다 compact한 성장을 유도시키기 위해 보호막의 toughness와 shear modulus를 증가시키는 소재 설계가 진행되고 있다. 무기전해질 소재는 낮은 전자전도성과 우수한 이온 전도성으로 인해 덴드라이트의 성장을 물리적으로 억제가 가능하다는 장점을 갖는다. 하지만 무기소재 보호막은 리튬 계면과 보호막에서의 화학적 안정성이 취약하다는 공통적인 한계가 존재한다. 산화물계 무기전해질의 경우는 리튬 전극과 밀착 계면 형성에 어려움을 가지고, 황화물계 무기전해질의 경우는 리튬과의 화학적 안정성이 취약하다. 유무기 복합 보호막은 무기소재 도입으로 보호막의 강도를 높여 덴드라이트 생성을 억제시키는 유무기 소재들의 상호보완적 기능을 이용하는 설계가 진행되고 있다.[9]

관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황

내용

  • 특허조사 및 특허 전략 분석

내용

개발과제의 기대효과

기술적 기대효과

내용

경제적, 사회적 기대 및 파급효과

내용

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

내용

설계

목표 달성을 위한 설계 방법

LMB 상용화를 목표로 한 덴드라이트 억제 연구 방법에 대해 조사해보고자 한다.

방법 1. 보호막

  • 보호막은 전해질과 리튬 금속 사이에 위치하여 반응을 차단시켜 더 균일한 리튬 전착을 유도시키는 역할을 한다. 이러한 보호막은 리튬 이온 전도성, 전자 절연성, 밀착계면의 유지, 불균일한 표면 구조의 변화를 수용할 수 있는 능력의 특징을 갖고 있어야 한다. 이와 같은 요구를 충족시켜야 하기 때문에 연구 난이도가 높다고 할 수 있다.

설계 사양

내용

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용