"팀명"의 두 판 사이의 차이

env wiki
이동: 둘러보기, 검색
47번째 줄: 47번째 줄:
 
  본 설계를 통해 달성하고자 하는 목표는 다음 세 가지이다.  
 
  본 설계를 통해 달성하고자 하는 목표는 다음 세 가지이다.  
  
1. 근적외선 분광법을 활용한 ‘플라스틱 스캐너’ 기술로 플라스틱 재질 분석  
+
:1. 근적외선 분광법을 활용한 ‘플라스틱 스캐너’ 기술로 플라스틱 재질 분석  
2. 아두이노를 활용한 음성, 문구 출력을 통해 배리어프리(barrier-free) 실현  
+
:2. 아두이노를 활용한 음성, 문구 출력을 통해 배리어프리(barrier-free) 실현  
3. 초음파 거리 측정 센서를 활용한 투명 페트병 압축 시스템 설계  
+
:3. 초음파 거리 측정 센서를 활용한 투명 페트병 압축 시스템 설계  
 
   
 
   
 
  본 설계에서는 시민들에게 올바른 분리배출을 유도하여 기존 재활용 선별장의 환경을 개선하고 생수병의 재활용률을 향상시킬 수 있는 KS Bin 제작 설계를 진행한다. KS Bin에 대한 설명은 다음과 같다.   
 
  본 설계에서는 시민들에게 올바른 분리배출을 유도하여 기존 재활용 선별장의 환경을 개선하고 생수병의 재활용률을 향상시킬 수 있는 KS Bin 제작 설계를 진행한다. KS Bin에 대한 설명은 다음과 같다.   

2022년 6월 17일 (금) 00:34 판

프로젝트 개요

기술개발 과제

국문 : 에슥파

영문 : ESGPA

과제 팀명

스마트 올인원 투명 페트병 분리배출함 설계

지도교수

이상철 교수님

개발기간

2022년 3월 ~ 2022년 6월 (총 4개월)

구성원 소개

서울시립대학교 환경공학부 20188900** 이**(팀장)

서울시립대학교 환경공학부 20188900** 구**

서울시립대학교 환경공학부 20188900** 이**

서울시립대학교 환경공학부 20188900** 최**

서울시립대학교 환경공학부 20198900** 김**

서론

개발 과제의 개요

개발 과제 요약

플라스틱 소비량은 매년 증가하고 있어 폐플라스틱 처리 및 재활용의 중요성이 더욱 강조되고 있다. 투명 페트병을 재활용할 경우 품질이 우수한 상품을 생산할 수 있어 순환경제 구축에 기여할 수 있다. 따라서 본 설계에서는 투명 페트병의 효과적 분리배출을 위하여 스마트 올인원 투명 페트병 분리배출함을 설계하였다. 
플라스틱 재질별로 자동 분류 및 압축하여 선별장을 거치지 않아도 되며 기계 자체 음성이나 문구를 통해 분리 배출 가이드라인을 안내하여 사람들의 인식 개선을 유도할 수 있도록 제작하였다. 동시에 시각•청각장애인도 스스로 분리배출 활동에 참여할 수 있게 하여 공익성을 갖추었다.
KS Bin은 크게 투입부와 압축부, 수거부, 음성 및 문구 출력부로 구성된다. 본 설계에 적용될 KS Bin만의 독창적인 아이디어로는 ‘적외선 센서를 이용한 플라스틱 재질 분석’, ‘투명 페트병이 올바르게 분리배출됐을 경우에만 페트병을 수거부로 밀어주는 이동판’, ‘페트병 본체, 뚜껑, 라벨 투입구의 형태 시각화’, ‘장애인의 분리배출을 용이하게 하는 음성 및 문구 출력과 점자 표기’, ‘일정 높이 이상 적재되면 가동되는 압축기’ 등이 있다. 모형 제작은 RGB 컬러센서와 초음파 거리 센서를 활용하였다.
최종적으로 투입부 작동, 수거부 작동, 공익성, 경제성 측면에서 설계 작품을 평가하고 그 과정에서 설문조사와 비용편익 분석을 진행하였다.

개발 과제의 배경

플라스틱은 사람에게 편의를 제공하며 삶의 질을 높이는 데 큰 기여를 해왔다. 그러나 난분해성인 플라스틱을 친환경적으로 처리하기 위한 방법은 재활용이 거의 유일하며 재활용되지 않은 플라스틱은 일반적으로 소각하거나 매립 처리하게 된다. 환경부 통계에 따르면 2021년 폐플라스틱 배출량은 전년대비 약 14.6%가 증가하여 폐플라스틱 처리 및 재활용에 대한 중요성이 더욱 강조되고 있다.
한편 환경부에서는 지난 2018년 ‘재활용 폐기물 관리 종합대책’을 마련하여 2030년까지 폐플라스틱 발생량을 50% 감축하고 재활용율을 70%까지 올리기 위해 제품의 순환 단계별 개선사항을 설정하였다. 제조 및 생산단계에서 재활용이 어려운 제품을 점진적으로 퇴출하기 위해 생수∙음료수용 페트병은 무색으로 전환하고, 라벨의 경우에는 잘 떨어지는 형태로 생산하도록 권고하고 있다. 2020년 12월 25일부터는 투명 페트병 별도 분리배출을 공동주택에서 의무화하는 정책이 시행되어 아파트 쓰레기 분리수거장에서도 투명 페트병이 분리수거되고 있다. 일반 폐 플라스틱보다 투명 페트병 쓰레기를 재활용했을 때에 품질이 우수한 상품을 생산할 수 있어 친환경적인 정책이라 평가받고 있다.
그러나 이러한 의무화 정책 시행 이후에도 일부 사람들은 달라진 분리수거 방법에 대한 정보를 잘 모르거나 분리가 번거롭다는 이유로 올바른 분리수거 방법을 따르지 않는다. 투명 페트병 수거함을 살펴보면 올바르게 분리되지 않은 페트병이 버려져 있는 것을 어렵지 않게 발견할 수 있다. 이러한 현상으로 인해 재활용품 선별장에서 투명 페트병과 다른 재질의 플라스틱을 분류하는 선별 공정을 한 번 더 거쳐야 하는 아이러니한 상황이 벌어지고 있다.
그 외에 분리배출에서의 어려움이 발생하는 이유로 장애인들에 대한 배려 부족 문제가 있다. 현재 시각장애인을 배려한 분리배출 표지제도는 미비한 상황이다. 일부 플라스틱 제품의 분리배출 표시가 양각으로 되어 있어 촉감으로 소재를 어느 정도 파악하는 것이 가능하지만, 제품마다 표시의 위치와 크기가 상이하여 시각장애인들이 이를 실질적으로 이용하기에는 어려운 상황이다. 이처럼 시각장애인들은 제도의 사각지대에 놓여있어 이들을 위한 제도적 보완이나 기술적 대책이 필요한 실정이다.
위와 같은 문제를 해결하기 위해 본 설계에서는 투명 페트병의 효과적 분리배출을 위한 스마트 올인원 투명 페트병 분리배출함인 Kind & Smart Bin (이하 ‘KS Bin’)을 설계하고자 한다. 해당 분리배출함 내에서 플라스틱을 재질별로 완전히 분류 및 압축하여 선별장을 거치지 않고도 고품질의 재활용 소재를 재활용 업체에 곧바로 보낼 수 있고, 기존의 스마트 분리배출함과 달리 플라스틱을 세부 재질별로 분류한다는 점에서 독창성을 가진 설계를 진행할 것이다. 또한 분리배출이 제대로 이루어지지 않았을 때 기계 자체 음성이나 문구로 분리배출 가이드라인을 안내하여 사람들이 스스로 참여할 수 있도록 유도함과 동시에, 시각•청각장애인도 타인의 도움 없이 분리배출에 참여할 수 있어 공익성을 갖춘 설계가 될 것이다.
새로운 분리수거 정책이 도입되거나 변경되었을 시 현실로의 신속한 반영 역시 가능하다. 투명 페트병 분리배출 의무화는 2020년 12월에는 공동주택(300세대 이상), 1년 뒤인 2021년 12월에 의무관리 비대상 공동주택과 단독주택을 대상으로 실시되었다는 점과, 아직도 투명 페트병 수거함에 라벨이 부착된 페트병이 적지 않게 발견되는 점을 고려하면 정책이 시행됐다고 하더라도 전국민이 참여하기까지는 긴 기간이 소요됨을 알 수 있다. 이때 KS Bin을 도입한다면 정책의 실효성이 증가될 것이라 기대할 수 있다. 
마지막으로 인건비 절약 측면에서 경제성을 확보할 수 있다. 배출함 내에서 플라스틱 선별을 완료해 배출장에서의 인건비를 줄이고, 이를 바로 재활용 업체에 보냄으로써 선별장에서의 인건비를 줄인다. 즉, KS Bin은 투명 페트병 분리배출의 정확성을 높임과 동시에 자원의 효율적 관리를 실현한, 기존 분리배출함의 똑똑한(smart) 보완책이 될 수 있을 것이며, 비장애인만을 위한 설계에 한정하는 것이 아니기에 차별 없는 공정 사회 실현에 기여하는 착한(kind) 설계로도 나아갈 수 있을 것이다.

개발 과제의 목표 및 내용

본 설계를 통해 달성하고자 하는 목표는 다음 세 가지이다. 
1. 근적외선 분광법을 활용한 ‘플라스틱 스캐너’ 기술로 플라스틱 재질 분석
2. 아두이노를 활용한 음성, 문구 출력을 통해 배리어프리(barrier-free) 실현
3. 초음파 거리 측정 센서를 활용한 투명 페트병 압축 시스템 설계
본 설계에서는 시민들에게 올바른 분리배출을 유도하여 기존 재활용 선별장의 환경을 개선하고 생수병의 재활용률을 향상시킬 수 있는 KS Bin 제작 설계를 진행한다. KS Bin에 대한 설명은 다음과 같다.  
가장 먼저, KS Bin 입구에 생수병이 투입되면 플라스틱 재질을 스캔한다. 이때 근적외선 분광법(NIR, Near Infrared Ray)을 활용하여 신속한 판별이 이루어지도록 한다. 근적외선 분광법(NIR, Near Infrared Ray)은 0.75 ~ 3μm 파장의 근적외선을 대상물에 조사하여 반사된 스펙트럼을 측정하는 방법으로, 시료의 두께를 조절하는 전처리 과정이 생략되어 다소 신속한 분석이 가능하다. 측정 기기에 따라 수치는 상이하지만 결론적으로 플라스틱별로 서로 다른 반사 스펙트럼을 지니고 있어 쉽게 구분할 수 있다(그림 1).

스캔 결과 2가지 이상의 복합 플라스틱 재질이 감지되면 KS Bin에서 안내를 공지하면서 페트병이 수거되지 않는다. 보통 페트병은 뚜껑 HDPE, 본체 PET, 라벨 PP 소재로 이루어져 있다. 따라서 PET 외 또다른 스펙트럼이 감지될 경우, 뚜껑과 라벨이 분리되지 않았다는 것을 의미하므로 올바른 분리배출을 위해 “뚜껑을 분리해주세요”, “라벨을 분리해주세요” 와 같은 음성 또는 문구가 출력되도록 한다. 이는 비장애인은 물론, 시/청각적으로 장애를 가지고 있는 사람들도 불편함 없이 KS Bin을 이용할 수 있도록 하기 위함이다. 한편, 페트병의 뚜껑, 본체, 라벨이 각 투입구에 바르게 배출되면 배출함 내에서 압축 과정을 거친다. 배출함 내부에 페트병 압축기를 설치해 페트병의 부피를 감소시킴으로써 배출함에 많은 수의 페트병을 효과적으로 보관하고, 수거 과정에서의 효율성 역시 높인다. 플라스틱 재질 스캔과 분리 과정을 통해 PET 재질만 남은 페트병이 KS Bin 안으로 들어오고, 이러한 페트병이 일정 높이 이상 쌓이면 KS Bin 내부에서 압축기가 작동하도록 한다. 이때 KS Bin 내에 페트병이 쌓인 높이를 확인하는 방법으로 적외선 거리 측정 센서를 이용한다. 천장에 적외선 거리 측정 센서를 부착하여 일정 거리 이하로 측정되면 자동으로 압축이 이루어지도록 설계한다. 모든 과정을 마치면 배출함 내부에는 HDPE(뚜껑), 압축된 PET(본체), PP(라벨) 플라스틱이 각각 분리되어 모인다.


관련 기술의 현황

관련 기술의 현황 및 분석(State of art)

  • 전 세계적인 기술현황
    • 플라스틱 스캐너

플라스틱 스캐너는 근적외선 분광법으로 물체를 스캔하고 플라스틱 유형을 식별한다. PET, HDPE, PE, PVC, PP, PS 가장 일반적인 5가지 플라스틱을 구별할 수 있다. 물질 표면에 빛을 비추면 일부는 흡수되고 일부는 반사되며 이 비율은 물질 구조와 파장에 따라 달라진다. 근적외선(near infrared)은 적외선 중에서 파장이 짧아 가시광선에 가까운 영역으로, 보통 780nm - 2500nm(2.5μm) 영역을 말한다. 분광학적 관점에서 근적외선 영역은 물질의 강한 흡수가 거의 없는 영역으로, 1950년경부터 산업적으로 응용되었다. 플라스틱 스캐너는 근적외선의 특정 파장을 에뮬레이션하는 광다이오드(photodiode)와 8개의 LED로 구성되어 있다. 각 LED를 플라스틱 샘플에 개별적으로 점멸하고 광다이오드로 반사율을 측정하여 반사 스펙트럼을 얻는다.

    • 사물인터넷(Internet of Things, IoT)

사물인터넷은 무선 통신을 통해 각종 사물을 연결하는 기술을 의미한다. 이때 사물은 고유의 IP를 가지고 인터넷과 연결되어야 하며, 외부 환경으로부터의 데이터 취득을 위해 센서를 내장할 수 있다. 사물인터넷의 진정한 가치는 지능화, 고도화될 때 나타난다. 마이클 포터(Michael Porter)의 사물인터넷 단계는 다음과 같다. 첫째, 모니터링 단계로 센싱데이터(sensing data)를 통해 제품 상태나 외부 환경에 대해 알리는 단계다. 둘째, 제품이나 이용자의 환경을 제어하는 제어 단계다. 이 두 단계는 지금까지 수행된 사물인터넷의 모습이다. 세번째 단계부터는 지능화, 고도화된 단계로 발전한다. 셋째, 소프트웨어 알고리즘을 통해 성능을 항상 진단하거나 예측 기능까지 갖추는 것이고, 넷째는 자율화된 기능을 수행하는 것이다. 이러한 사물인터넷 기술이 활용된 예시로는 경쟁 제품인 오이스터에이블의 스마트 분리배출함이 있다. 사물지능융합기술(AIoT)을 ‘오늘의 분리수거’ 앱과 연동했으며, 내부 AI 카메라가 모든 재활용품을 종류별로 알아서 인식해 분류하는 방식으로 이용되고 있다.


  • 특허조사 및 특허 전략 분석
    • 페트병 자원 회수 장치 및 페트병 자원 관리 서버 (PET Bottle Resource Recovery Apparatus and PET Bottle Resource Management Server)

출원번호 : 10-2021-0140834 / 출원일자: 2021.10.21. 구성: 페트병 배치부, 이미지 생성부, 이미지 처리부, 파쇄기, 저장부, 페트병 배출구 요약: 투입된 페트병을 이미지화하여 페트병의 뚜껑, 라벨 및 이물질 유무를 확인하고, 뚜껑, 라벨 및 이물질이 제거된 형태로 회수된 페트병에 대한 보상을 제공 효과: 추가적인 인력이나 비용 없이도, 재생원료로 활용될 수 있는 페트병을 회수할 수 있으며 회수된 페트병을 파쇄 저장함으로써 운반 비용 절약 가능

    • 재활용 쓰레기 자동 분리 수거 시스템 (Automatic separation collection system for recycled waste)

출원번호 : 10-2020-0060668 / 출원일자: 2020.05.21. 구성: 하우징, 컨베이어 벨트, 선별수단, 절단수단, 세척수단, 압축분쇄수단, 배출수단 요약: 선별수단(자석, 컨베이어 벨트)과 절단수단, 세척수단과 압축분쇄수단, 배출수단(높이측정 센서, 진동 기술)을 구비한 재활용 쓰레기 자동 분리 수거 시스템을 제공 효과: 재활용 쓰레기 자동 분류, 저장 공간의 용이한 활용, 수거함 내부 및 주변의 환경오염 방지

    • 자동 압축 쓰레기통 (Automatic Compressed Trash Can)

출원번호 : 10-2020-0080933 / 출원일자: 2020.07.01. 구성: 쓰레기통 몸체, 압축기, 열림판, 적외선 센서 요약: 적외선 센서에 의하여 쓰레기통 저장 부분의 쓰레기량을 인식하고 일정량에 도달하면 압축시킨 후, 내부 열림판을 통해 쓰레기를 아래로 내리도록 구성한 자동 압축 쓰레기통(일반쓰레기) 효과: 많은 양의 쓰레기가 압축되어, 분리수거의 불편함과 대기 전력 소모 문제를 해결할 수 있음



  • 기술 로드맵
    • 적외선 분광법

- 1800년대: 윌리엄 허셀(William Herschel)이 프리즘을 이용해서 가시광선 온도를 측정하는 실험을 시도하였다. 빛이 없는 영역에서의 온도가 실온보다 높은 것을 발견하였으며, 눈에 보이지는 않지만 어떤 형태의 전자기파가 존재한다는 사실을 처음 발견하였는데, 이것이 적외선을 최초로 발견한 실험이었다. 한편 영국의 F.W.Herschel에 의해 Dispersion IR Spectrometer가 개발되었다. Prism대신 Grating을 이용하게 되고 개발된 Filter나 반도체 등의 이용으로 점진적 발전하여 최근 컴퓨터 발전에 힘입어 Fourier transform IR이 개발되었으며 이는 적외선 분광장치의 크나큰 변혁이었다. - 1900년: 적외선이 물체의 온도와 관련되어 있다는 이론적인 연구들이 슈테판(Stefan)과 빈(Wien), 그리고 볼쯔만(Boltzmann) 등을 거쳐 1900년에 맥스 플랑크(Max Planck)에 의해 파장과 온도의 함수로 된 복사법칙(Radiation Equation)으로 완성되었다. 이러한 사실로부터 적외선 센서는 주로 온도 측정용으로 사용되었다. - 1969년: 미국에서 Interferometer를 이용한 FT-IR(Digilab FTS-14)이 상품화되었다. 그 후 Software 및 Data system의 개발과 High resolution, High sensitivity연구를 통해 현재의 고성능 FT-IR Spectrometer에 이르렀다.

    • 사물인터넷(Internet of Things, IoT)

- 2000년대 초: 공급망 관리 지원(물류, 재고 관리 및 분실 방지를 위한 RFID 태그 개발) - 2000년~2010년: 수직 시장 애플리케이션(감시, 보안, 의료, 교통, 식품 안전, 문서 관리 분야) 확산 - 2010년~2020년: 유비쿼터스의 확대(사람과 실내에 있는 사물의 위치 정보 신호 감지 및 추적) - 2020년대: 물리적인 월드 웹(소프트웨어 에이전트 및 진보된 센서 융합 기술을 통한 원거리 사물 제어 및 감시)


시장상황에 대한 분석

  • 경쟁제품 조사 비교
  • 마케팅 전략 제시

내용

개발과제의 기대효과

기술적 기대효과

내용

경제적, 사회적 기대 및 파급효과

내용

기술개발 일정 및 추진체계

개발 일정

내용

구성원 및 추진체계

내용

설계

설계사양

제품의 요구사항

내용

설계 사양

내용

개념설계안

내용

이론적 계산 및 시뮬레이션

내용

상세설계 내용

내용

결과 및 평가

완료 작품의 소개

프로토타입 사진 혹은 작동 장면

내용

포스터

내용

관련사업비 내역서

내용

완료작품의 평가

내용

향후계획

내용

특허 출원 내용

내용